CHAPTER 9

Engineering Convexity Positions

Introduction

How can anyone trade volatility? Stocks, yes. Bonds, yes. But volatility is not evassat
Several difficulties are associated with defining precisely what volatility is. For example, from
a technical point of view, should we define volatility in terms of the estimate of the conditional
standard deviatioof an asset pric&;?

E[Sy — E[S:]]? (1)
Or should we define it as the averaggsolutedeviation?
E.[|S: — E[S4]]] 2

There is no clear answer, and these two definitions of statistical volatility will ydéfer-
entnumerical values. Leaving statistical definitions of volatility aside, there are many instances
where traders quote, directly, the volatility instead of the dollar value of an instrument. For exam-
ple, interest rate derivatives markets qucig-floorandswaptionvolatilities. Equity options
provideimplied volatility. Traders and market makers trade the quoted volatility. Hence, there
must be some way of isolating and pricing what these traders call volatility in their respective
markets.

We started seeing how this can be done in Chapter 8. Options bewaraesaluablavhen
“volatility” increased, everything else being the same. Chapter 8 showed how these strategies
can quantify and measure the “volatility” of an assehionetaryterms. This was done by
forming delta-neutral portfolios, using assets with different degrees of convexity. In this chap-
ter, we develop this idea further, apply it to instruments other than options, and obtain some
generalizations. The plan for this chapter is as follows.

First, we show how convexity of a long bond relatesyteld volatility. The higher the
volatility of the associated yield, the higher the benefit from holding the bond. We will discuss
the mechanics of valuing this convexity. Then, we compare these mechanics with option-related
convexity trades. We see some close similarities and some differences. At the end, we generalize
the results to any instrument with different convexity characteristics. The discussion associated
with volatility tradingitself has to wait until Chapter 13, since it requires an elementary treatment
of arbitrage pricing theory.
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FIGURE 9-1
A Puzzle

Here is a puzzle. Consider the yield curve shown in Figure 9-1. The 10-year zero coupon bond
has a yield to maturity that equals 5.2%. The 30-year zero, however, has a yield to maturity of
just 4.94%. In other words, if we buy and hold the latter bondr2@eyears, we would receive
aloweryield during its lifetime.

It seems a bit strange that the longer maturity is compensated with a lower yield. There are
several economic or institutional explanations of this phenomenon. For example, expectations
for inflation 20 years down the line may be less than the inflationary expectations for the next
10 years only. Or, the relative demands for these maturities may be determined by institutional
factors and, because players don't like to move out of their “preferred” maturity, the yield
curve may exhibit such inconsistencies. Insurance companies, for example, need to hedge their
positions on long-term retirement contracts and this preference may lower the yield and raise
the price of long bonds.

But these explanations can hardly fully account for the observed anomaly. Institutional
reasons such geeferred habitatind treasury debt retirement policies that reduce the supply of
30-year treasuries may account for some of the difference in yield, but it is hard to believe that
an additional 20-year duration is compensated so little. Can there be another explanation?

In fact, the yield to maturity may not show all the gains that can be realized from holding a
long bond. This may be hard to believe, as yield to maturityyiglefinitionhow much the bond
will yield per annum if kept until maturity.

Yet, there can be additional gains to holding a long bond, due to the convexity properties of
the instrument, depending on what else is available to trade “against” it, and depending on the
underlying volatility. These could explain the “puzzle” shown in Figure 9-1. The 4.94% paid by
the 30-year treasurplussome additional gains, could exceed the total return from the 10-year
bond. This is conceivable since the yield to maturity andtdital returnof a bond are, in fact,
quite different ways of measuring financial returns on fixed-income instruments.

Bond Convexity Trades

We have already seen convexity trades within the context of vanilla options. Straightforward
discount bonds, especially those with long maturities, can be analyzed in a similar fashion and
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have exposure to interest rate volatility. In fact, a “long” bond and a vanilla optiobatie
convex instruments and they both coexist with instruments that are either linear or have less
convexity! Hence, adelta-neutral portfolio can be put together for long maturity bonds to
benefit from volatility shifts. The overall logic will be similar to the options discussed in the
previous chapter.

Consider a long maturity default-free discount bond with pite, T'), with ¢ < T'. This
bond’s price at time can be expressed using the corresponding tigield, y;

1
(1+yH)T

Fort = 0,and T" = 30, this function is plotted against various values of the 30-year zero-coupon
yield, in Figure 9-2. It is obvious that the price iganvexfunction of the yield.

A short bond, on the other hand, can be represented in a similar space with an almost linear
curve. For example, Figure 9-3 plots a 1-year bond pH¢e, 1) against a 1-year yielg. We
see that the relationship is essentially lingar.

The main point here is that, under some conditions, using these two bonds we can puttogether
a portfolio that will isolate bond convexity gains similar to the convexity gains that the dynamic
hedging of options has generated. Thus, suppose movements in the twoyyieldy;® are
perfectly correlated over time3 Next, consider a trader who tries to duplicate the strategy
of the option market maker discussed in the previous chapter. The trader buys the long bond
with borrowed funds andelta-hedges the first-order yield exposure by shorting an appropriate
amount of the shorter maturity bond.

This trader will have to borrouB(0, 30) dollars to buy and fund the long bond position. The
payoff of the portfolio

B(t,T) = 3)

{Long bond, loan oB(0, 30) dollars} 4)

is as shown in Figure 9-2b as cur#®B’. Now compare this with Figure 9-2c. Here we show
the profit/loss position of a market maker who buys an at-the-money “put option” on the yield
y30. At expiration timeT’, the option will pay

P(T) = max[y;’ — v, 0] (5)

This option is financed by a money market loan so that the overall position is shown as the
downward sloping curvés B’.* We see a great deal of resemblance between the two positions.

Given this similarity between bonds and options, we should be able to isolate convexity or
gammatrading gains in the case of bonds as well. In fact, once this is done, using an arbitrage
argument, we should be able to obtain a partial differential equation (PDE) that default-free

1 The short maturity bonds are almost linear. In the case of vanilla options, positions on underlying assets such as
stocks are also linear.

2 In fact, a first-order Taylor series expansion around zero yields
. 1

- (1 +y)

= (1—yg)

B(0,1)

if the y§ is “small.”

3 This simplifying assumption implies that all bonds are affected bystiveeunpredictable random shock, albeit
to a varying degree. It is referred to as the one factor model.

4 The option price is the curvBB’. The curve shifts down by the money market loan amdetwhich makes
the position one of zero cost.
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discount bond prices will satisfy. This PDE will have close similarities to the Black-Scholes

PDE derived in Chapter 8.

The discussion below proceeds under some simplifying and unrealistic assumptions. We use

FIGURE 9-2

the so-called one-factor model. Our purpose isnderstandhe mechanics of volatility trading

in the case of bonds and this assumption simplifies the exposition significantly. Our context is
different than in real life, where fixed-income instruments are affected by more than a single

common random factor. Thus, we make two initial assumptions:

1. There is shortand along default-free discount bond with maturiti#s and’’, respec-
tively. Both bonds aréquid and can be traded without any transaction costs.
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2. The two bond prices depend on the same risk factor denoted Blyis can be interpreted
as a spot interest rate that captures all the randomness at, tand is the single factor
mentioned earlier.

The second assumption means that the two bond prices are a function of the shart rate
These functions can be written as

B(t,T%) = S(ry,t,T%) (6)
and
B(t,T) = B(r,t,T) (7)

whereB(t, T?) is the timet price of the short bond and thi&(¢, T') is the timet price of the long
bond. We postulate that the maturify is such that the short bond pridg(¢, 7°) is (almost)
a linear function of r;, meaning that the second derivative Bft, 7) with respect tor; is
negligible.

Thus, we will proceed as if there was a single underlying risk that causes price fluctuations
in a convex and a quasi-linear instrument, respectively. We will discuss the cash gains generated
by the dynamically hedged bond portfolio in this environment.

Delta-Hedged Bond Portfolios

The trader buys the long bond with borrowed funds and then hedges the downside risk implied
by the curveA A’ in Figure 9-4. The hedge for the downside risk will be a position that makes
money whenr, increases, and loses money whendeclines. This can be accomplished by
shorting an appropriate number of the short bond.

In fact, the trick to form alelta-neutral portfolio is the same as in Chapter 8. Take the partial
derivative of the function$'(r¢, t, 7°) andB(r¢, ¢, T') with respect to-, evaluate them at point
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ThesS, is assumed to be a constant, given the quasi-linearity of the short bond price with respect
to r,. Theh, is a function ofr;, since theB,. is not constant due to the long bond’s convexity.
Given the value of,, theh; can be numerically calculated, ahg units of the short maturity
bond would besoldshort att.

The change in the value of this portfolio due to a small change in the spahratenly, is
given by

A [B(Tt,t7T) - htS(’l"t,t,Ts)] = BTA’T't - %STA’Y} + R (10)
-R (11)

since theS,. terms cancel ouR is the remainder term of the implied Taylor series approximation,
or Ito’s Lemma in this case, which depends essentially on the second derivativend onr,
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volatility. The S,. is approximately constant. This means that the net position,
{Borrow B(t, T') dollars, Buy oneB(t, T'), Shorth; units of B(t, T%)} (12)

will have the familiar volatility position shown in the bottom part of Figure 9-4rABuctuates,

this position is adjusted by buying and (short) selling an appropriate number of the nonconvex
asset. The new value of partial derivative, is used at each readjustment. Again, just as in
Chapter 8, this will make the practitioner “sell high” and “buy low” (or vice versa). As a result
of these hedge adjustments, the counterparty avtnasthe long bond will eargammaprofits.

These trading gains will be greater as volatility increases. Hence, we reach the result:

e Everything else being the same, the greater the volatility ahe more “valuable” the
long bond.

This means that as volatility increasesteris paribusthe yield of the convex instruments
should decline, since more market participants will try to put this trade in place and drive its
price higher.

EXAMPLE:

Suppose that initially the yield curve is flat at 5%. The value of a 30-year default-free
discount bond is given by

1
B(0,30) = R (13)
=0.23 (14)
The original delta of the bond),, atr;, = .05 will be:
30
Dy, = TR (15)
= —6.61 (16)

A 1-year short bond is assumed to have an approximately linear pricing formula

B(to, T?) = (1 —ry,) a7
=0.95 (18)
The market maker will borrow 0.23 dollars, buy one long bond, and then hedge this
position byshorting

—6.61

-1.0 (19)

unitsof the short bond. (Given linearity approximation the short bond has unit interest
sensitivity.)

A smalltimeA, passes. All rates change, moves to 6%. The portfolio value will move

1 1
ABILT) = MAB(LTT) = | 757567 ~ (17 05)
~6.61[(1—.06) — (1 —.05)] (20)

= 0.009 (21)
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Note that in calculating this number, we are assuming thas small. Only the effect
of changingr; is taken into account. In a sense, we are using a framework similar to
partial derivatives.

The new delta is calculated as4.9. The adjusted portfolio should be short 4.9 units of
the short bond. Thus,

(6.6 —4.9) = 1.7 (22)

units need to be covered at a price of 0.94 each to bring the position to the desired
delta-neutral state.

This leaves a trading profit equal to
1.7(0.95 — 0.94) = $.017 (23)

Another period passes, withh going back to;, = .05. The cycle repeats itself. The delta
will change again, the portfolio will be readjusted, and trading profits will continue to
accumulate.

This example is approximate, since not all costs of the position are taken into account.
The example started with the assumption of a flat yield curve, which was later relaxed and the
yields became volatile. However, we never mentioned what causes this change. It turns out that
volatility leads to additional gains for long bond holders and this increases the demand for them.
As a resultceteris paribuslong bond yields wouldeclinerelative to short bond yields. Hence,
the introduction of yield volatility changed the structure of the initial yield curve.

Costs

What are the costs (and other gains) of putting together such a long volatility position using
default-free discount bonds? First, there is the funding cost. To buy the longBohd;) funds

were borrowed at; percent per annum. As long as the position is kept open, interest expense
will be incurred. Second, as time passes, the pricing function of the bond becomes less and less
convex, and hence the portfolio’s trading gains will respond less to volatility changes. Finally,
as time passes, the value of the bonds will increase automatically even if the rates don’t come
down.

A Bond PDE

A partial differential equation consisting of the gains from convexity of long bonds and costs
of maintaining the volatility position can be put together. Under some conditions, this PDE has
an analytical solution, and an analytical formula can be obtained the way the Black-Scholes
formula was obtained.

First we discuss the PDE informally. We start with the trading gains due to convexity. These
gains are given by the continuous adjustment of the hedgehatiwhich essentially depends
on theB,., except for a constant of proportionality, since the hedging instrument is quasi-linear
in r,. Asr, changes, the partid®, changes, and this will be captured by the second derivative.

Then, convexity gains during a small time interyais a function, as in Chapter 8, of
10*B(t, T
77(2’ )(O'(’I"t,t>’l"t\/A)2 (24)
2 Or;

This is quite similar to the case of vanilla options, except that here {thet) is the percentage
short rate volatility. Short bond interest sensitivity will cancel out.
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If we model therisk-neutral dynamicsf the short rate-, as
d?"t = ,U,(?"t, t)dt + O'Ttth t e [0, T] (25)

where percentage volatility is constant, thesgammagains simplify to

1
§B,M.U2TEA (26)
during a small period\.®

To these, we need to add (subtract) other costs and gains that the position holder is subject
to. The interest paid during the periddon borrowed funds will be

rB(t,T)A (27)
The other gain (loss) is the direct effect of passing time

dB(t,T)

ot

As time passes, bonds earn accrued interest, and convexity declines due to “roll-down” on the
yield curve. The interest earned due to shorting the linear instrument will cancel out the cost of
this short position.

The final component of the gains and losses that the position is subject to duisngore
complex than the case of a vanilla call or put. In the case of the option, the underlying stock,
S, provided a very goodelta-hedging tool. The market maker so(gértC(St, t) units of the
underlyingsS; in order to hedge a long call position. In the present case, the underlying risk is
not the stock price&, or some futures contract. The underlying risk is the spotiratand this
is notan asset. That is to say, the “hedge” is npttself, but instead it is an assetdirectly
influencedy r;. Also, randomness of interest rates requires projecting future interest gains and
costs. All these complicate the cash flow analysis.

These complications can be handled by positing thadtifieterm.(r;, t) in the dynamics,

A = B,A (28)

d?"t = M(Ttv t)dt + O"I"thVt7 t e [0, T} (29)
represents thesk-free expected changethe spot rate over an infinitesimal intervil” Using
this drift, we can write the last piece of gains and losses over a small intAreal (Vasicek
(2977)):

/L(?"t7 t)BTA (30)

Adding all gains and losses during the interdglwe obtain thenetgains from the convexity
position:

1
§BM02rt2A + p(re, ) B.A — 1 BA + B;A (31)

5 Note that we are using the notation

6 See Appendix 8-2 to Chapter 8 for a definition of this SDE.

7 Chapter 11 will go into the details of this argument that uses risk-neutral probabilities.
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In order to preclude arbitrage opportunities, this sum must equal zero. Cancelling the common
A terms, we get the PDE for the bond:

1
3B + p(re, ) By =B + B, =0 (32)
The boundary condition is simpler than in the case of vanilla options and is given by
B(T,T) =1, (33)

the par value of the default-free bond at maturity déte

PDEs and Conditional Expectations

In this PDE, theunknownis again gunctionB(t,T"). This function will depend on the random
process, thet, as well as other parameters of the model. The most important of these is the
short rate volatilityg. If r, is the continuously compounded short rate, the solution is given by
the conditional expectation

B(t,T) = Bl [ 1 red] (34)

where, P is an appropriate probability. In other words, taking appropriate partial derivatives of
the right-hand side of this expression, and then plugging these in the PDE would make the sum
on the left-hand side of equation (32) equal to Zero.

Itisinteresting to look at the parallel with options. The pricing function3¢t, T') was based
on a particulaconditional expectatioand solved the bond PDE. In the case of vanilla options
written on a stockS;, and satisfying all Black-Scholes assumptions, the call gri¢g;, ¢) is
given by a similar conditional expectation,

O(Set) = B |00 (57, 7)] (35)

whereT is the expiration date, an# is the appropriate probability. If this expectation is
differentiated with respect t§; andt, the resulting partial derivatives will satisfy the Black-
Scholes PDE with the corresponding boundary condition. The main difference is that the Black-
Scholes assumptions take the short rat be constant, whereas in the case of bonds, itis a
stochastic process.

These comments reconcile the two views of options that were mentioned in Chapter 8. If
we interpret options as directional instruments, then equation (35) will give the expected gains
of the optional at expiration, under an appropriate probability. The argument above shows that
this expectation solves the associated PDE which was approached as an arbitrage relationship
tying gammagains to other costs incurred during periodic rebalancing. In fact, we see that the
two interpretations of options are equivalent.

From Black-Scholes to Bond PDE

Comparing the results of trading bond convexity with those obtained in trading vanilla options
provides good insights into the general characteristics of PDE methods that are commonly used
in finance.

In Chapter 8, we derived a PDE for a plain vanilla céli£) using the argument of convexity
trading. In this chapter, we discussed a PDE that is satisfied by a default-free pure discount bond
B(t,T). The results were as follows.

8 The major condition to be satisfied for this is the Markovness of
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1. The price of a plain vanilla call, written on a nondividend paying st6gkstrike K,
expirationT’, was shown to satisfy the following “arbitrage” equality:

%C’ss(a(st, t)S:)%A = (rC — rC,Sy)A — C,A (36)
whereo (S;, t) is the percentage volatility of; during one year. The way it is written
here, this percentage volatility could very well depend on trand.S,.

According to this equation, in order to preclude any arbitrage opportunities, trading
gains obtained from dynamic hedging during a period of lenytshould equal the net
funding cost, plus loss of time value. Cancelling common terms and introducing the
boundary condition yielded the Black-Scholes PDE for a vanilla call:

1Css(0 (S, 1)8)2 +1CSy —rC + Cy =0 (37)
C(T) = max[Sy — K, 0] (38)

Under the additional assumption thatS;, ¢)S; is proportional toS; with a constant
factor of proportionality,

O'(St,t)st = O'St (39)

this PDE could be solved analytically, and a closed-form formula could be obtained for
theC'(t). This formula is the Black-Scholes equation:

C(t) = S;N(dy) — Ke " TN (dy) (40)

log 2t +7(T —t) £ $02(T — t)
ov1T —t

The partial derivatives of thi€'(¢) would satisfy the preceding PDE.
2. The procedure for a default-free pure discount béd, 7') followed similar steps,
with some noteworthy differences. Assuming that the continuously compounded spot
interest rater,, is the only factor in determining bond prices, the convexity gains due
to oscillations inr, and to dynamic hedging can be isolated, and a similar “arbitrage
relation” can be obtained:
1

§BTT(U(rt,t)rt)2A = (r¢B — p(ry, t)B.)A — B/A (42)

di2 = (41)

Here, thes (1, t) is the percentage volatility of the short rateduring one year.
Cancelling common terms, and adding the boundary condition, we obtain the bond
PDE:

%Bwazrf + p(ry, t) By — B+ By =0 (43)
B(T,T)=1 (44)

Under some special assumptions on the dynamic behaviqy, tiis bond PDE can be
solved analytically, and a closed-form formula can be obtained.

We now summarize some important differences between these parallel procedures. First,
note that the PDE for the vanilla option is obtained in an environment where the only risk comes
from theasset priceS;, whereas for bonds the only risk is the interest ratavhich isnotan
asset per se. Second, the previously mentioned difference accounts for the emergence of the term
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wu(re, t) inthe bond PDE, while no such nontransparent term existed in the call option PDE. The
wu(re, t) represents the expected change in the spot rate ddiriogce the effect of interest rate

risk is taken out. Third, the(r, t) may itself depend on other parameters that affect interest
rate dynamics. It is obvious that under these conditions, the closed-form soluti@{#dr)

would depend on the same parameters. Note that in the case of the vanilla option, there was no
such issue and the only relevant parameter suabhis point is important since it could make

the bond price formula depend at the parameters of the underlying random process, whereas

in the case of vanilla options, the Black-Scholes formula depended on the characteristics of the
volatility parameter only.

Before we close this section, a final parallel between the vanilla option and bond prices
should be discussed. The PDE for a call option led to the closed-form Black-Scholes formula
under some assumptions concerning the volatilitg,0fAre there similar closed-form solutions
to the bond PDE? The answer is yes.

Closed-Form Bond Pricing Formulas

Under different assumptions concerning short rate dynamics, we can indeed solve the bond PDE
and obtain closed-form formulas. We consider three cases of increasing complexity.
The cases are differentiated by the assumed short rate dynamics.

3.6.1. Casel

The first case is simple. Supposes constant at. This gives the trivial dynamics,
dry =0 (45)
whereos andp(r, t) are both zero. The bond PDE in equation (43) then reduces to

—rB+B, =0 (46)
B(T,T) =1 (47)

This is a simple, ordinary differential equation. The solutift, T") is given by

B(t,T) = e "T70 (48)
3.6.2. Case2

The second case is known as the Vasicek md@&ippose theisk-adjusteddynamics of the
spot rate follows thenean-revertingrocess given by

dry = a(k — 1) dt + ocdWs t € [0,7] (49)

where thelV; is a Wiener process defined foriak-adjustedprobability*
Note that the volatility structure is restricted to constabsolutevolatility denoted byo.
Suppose, further, that the parameters:, o, are known exactly. The fundamental PDE for a

9 See Vasicek (1977).

10 The fact that this dynamic issk-adjusteds not trivial. Such dynamics are calculated under risk-neutral proba-
bilities and may differ significantly fromeal-world dynamics. These issues will be discussed in Chapter 11.

11 The adjustments for risk and the associated probabilities will be discussed in Chapter 11.
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typical B(t, T') will then reduce to
1
Bra(/{—rt)+Bt+§BrT02 -rnB=0 (50)

Using the boundary conditioB(7',T') = 1, this PDE can be solved analytically, to provide a
closed-form formula fo3(¢, T'). The closed-form solution is given by the expression

B(t,T) = A(t,T)e-C¢®Tre (51)
where,
1— —a(T—t)
C(t,T) = % (52)
(CtT)—(T-t)(e?r-502)  2¢(:,1)2
At,T)=e a2 T e (53)

Here, ther, is the “current” observation of the spot rate.

3.6.3. Case3

The third well-known case, where the bond PDE in equation (43) can be solved for a closed
form, is the Cox-Ingersoll-Ross (CIR) model. In the CIR model, the spottatassumed to
obey the slightly different mean-reverting stochastic differential equation

dry = a(k — ry)dt + o/TidWy t e [0,7] (54)

which is known as the square-root specification of interest rate volatility. Hei& tieea Wiener
process under thésk-neutralprobability.

The closed-form bond pricing equation here is somewhat more complex than in the Vasicek
model. It is given by

B(t,T) = A(t,T)e~ ¢t (55)

where the functionsi(¢, T) andC(¢, T') are given by

A /2 (@+)(T—1) 2o .
t,T)=1|2
(, ) (a+7)(67(T_t)—1)+2’7 ( )
Ct,T) =2 R 57
t pu
&) (a+7) (7Tt —1) 4+ 2+ (57)
and wherey is defined as
7= (@)’ +20 (58)

The bond volatilityo determines theisk premiain expected discount bond returns.

A Generalization

The previous sections showed that whenever two instruments depending on the same risk fac-
tor display different degrees of convexity, we can, in principle, put togetttsita hedging
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strategy similar to theleltahedging of options discussed in Chapter 8. Whether this is worth-
while depends, of course, on the level of volatility relative to transactions costs and bid-ask
spreads.

When a market practitioner buys a convex instrument and short sells an appropriate number
of a linear (or less convex) instrument, he or she will benefit flragher volatility. We then
say that the position i®ng volatility or long gammaThis trader has purchasgdmmal f, in
contrast, the convex instrument is shorted and the linear instrument is purchased at proper ratios,
the position will benefit when the volatility of the underlying decreases.

As the case of long bonds shows, the idea that volatility can be isolated (to some degree), and
then traded is very general, and can be implemented when instruments of different convexities
are available on theamerisk. Of course, volatility can be such that transaction costs and bid-ask
spreads make trading it unfeasible, but that is a different point. More important, if the yield curve
slope changes due to the existence of a second factor, the approach presented in the previous
sections will not guarantee convexity gains.

Sources of Convexity

There is more than one reason for the convexity of pricing functions. We discuss some simple
cases briefly, using a broad definition of convexity.

Mark to Market

We start with a minor case due to darharking-to-marketequirements. Lef; denote the daily
futuressettlement price written on an underlying asSgtlet F; be the correspondinfprward
price, and let; be the overnight interest rate.

Marking to market means that the futures position makes or loses money every day depending
on how much the futures settlement price has changed,

Afe=fe— fia (59)

where the time indexis measured in days and hence is discrete.

Suppose the overnight interest ratds stochastic. Then if the trader receives (pays) mark-
to-market gains daily, these can be deposited or borrowed at higher or lower overnight interest
rates. IfA f; wereuncorrelatedwith interest rate changes,

ATt =Tt —Tt—1 (60)

marking to market would not make a difference.

But, whensS, is itself an interest rate product or an asset price related to interest rates,
the random variableA f; and Ar; will, in general, be correlated. For illustration, suppose the
correlation between f; andAr; is positive. Then, wheyf, increases;, is likely to increase also,
which means that the mark-to-market gains can now be invested at a higher overnight interest
rate. If the correlation betweeA f; and Ar; is negative, the reverse will be true. Forward
contracts do not, normally, require such daily marking-to-market. The contract settles only at
the expiration date. This means that daily paper gains or losses on forward contracts cannot be
reinvested or borrowed at higher or lower rates.

Thus, a futures contract written on an asSgtvhose price isiegativelycorrelated withr,
will be cheaper than the corresponding forward contract. If the correlation bet$yesmdr;
is positive, then the futures contract will be more expensiv8, Hndr, are uncorrelated, then
futures and forward contracts will have the same price, everything else being the same.
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EXAMPLE:

Consider any Eurocurrency future. We saw in Chapter 4 that the price of a 1-year
Eurodollar future, settling at timé+ 1, is given by the linear function

Vi =100(1 — f) (61)

Normally, we expect overnight interest rateo be positively correlated with the futures
rate f,. Hence, the pricé/;, which is not a convex function, would be negatively cor-
related withr;. This means that the Eurodollar futures will be somewhat cheaper than
corresponding forward contracts, which in turn means that futures interest rates are
somewhat higher than the forward rates.

Mark-to-market is one reason why futures and forward rates may be different.

Conwvexity by Design

Some products have convexity by design. The contract specifies payoffs and underlying risks,
and this specification may make the contract price a nonlinear function of the underlying risks.
Among the mostimportant classes of instruments that permit such convexity gains are, of course,
options.

We also discussed convexity gains from bonds. Long maturity default-free discount bond
prices, when expressed as a function of yield to matuyityare simple nonlinear functions,
such as

100

BOD) =gy

(62)

Coupon bond prices can be expressed using similar discrete time yield to maturity. The price of
a coupon bond with coupon rateand maturityl’, can be written as

T 100e 100
P = (Z 0 +yt>i> ML ©

i=1

It can be shown that default-free pure discount bonds, or strips, have more convexity than coupon
bonds with the same maturity.

4.2.1. Swaps

Consider a plain vanilla, fixed-payer interest rate swap with immediate start date @atand
end datet,, = 7. Following market convention, the floating rate set at timis paid at time
t;+1. For simplicity, suppose the floating rate is 12-month USD Libor. This mean$ that
Let the timet = t, swap rate be denoted Byand the notional amounly, be 1.

Then, the timek, value of the swap is given by

5 Lt — S Lt — S Lt ., — S
VvV, =EF 0 + L e M 64
=P T Ly T O L1 Loy Moo
where{L,,, . . . ,L,, ,}arerandom Liborratestobe observedattimes . . ,¢,_1,respec-

tively, and P is an appropriate probability measure. With a proper choice of measure, we can
act as if we can substitute fmrward Libor rate, F'(to, ¢;), for the future spot Libor;, for
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all t;.22 If liquid markets exist where such forward Libor rates can be observed, then after this
substitution we can write the previous pricing formula as

o LtO—S F(to,tl)—s
o S ) T O L)t B ) (©)
+ F(to,tg)—s N F(to,tnfl)—s
(1 + Lto)(l + F(tO? tl))(l =+ F(to, tQ)) H?;OI(]. + F(to, tz))

whereF (to, to) = Ly, , by definition. Clearly, this formula is nonlinear in eaklty, ¢;). As the
forward rates change, tié, changes in a nonlinear way.

This can be seen better if we assume that the yield curve is flat and that all yield curve shifts
are parallel. Under such unrealistic conditions, we have

Ly, =F(to,t0) = F(to,t1) = - - = F(to,tn—1) = Fy, (66)

The swap formula then becomes

_FtO—S FtO—S FtO—S
T R e s N (e N L ©7
which simplifies té3
T _
Vi = (Fyy — )t Fa) = 1) (68)

Fto(l +Ft0)T

The second derivative of this expression with respedt.towill be negative, for all;, > 0.

As this special case indicates, the fixed-payer swap is a nonlinear instrumentin the underlying
forward rates. Its second derivative is negative, and the functionrisavewith respect to a
“typical” forward rate. This is not surprising since a fixed-payer swap has risks similar to the
issuingof a 30-year bond. This means that a fixedeiverswap will have a convex pricing
formula and will have a similar profile as a long position in a 30-year coupon bond.

EXAMPLE:

Figure 9-5 plots the value of a fixed-payer swap under the restrictive assumption that the
yield curve is flat and that it shifts only parallel to itself. The parameters are as follows:

t=0 (69)
s=T% (70)
T =30 (72)
Fy, = .06% (72)

We see that the function is nonlinear and concave.

12 This substitution is delicate and depends on many conditions, among them the fact that the Libor decided at reset
datei is settled at daté+ 1.

13 Factor out the numerator and use the geometric series sum:

1— (ZT+1

l+a+a®+. - +a’ = 1
—a
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FIGURE 9-5

In Chapter 15 we will consider a different type of swap, called constant maturity swap. The

convexity of constant maturity swaps is due to their structure. This convexity will, in general,
be more pronounced and at the same time more difficult to correctly account for.

Taking convexity characteristics of financial instruments into account is important. This is

best illustrated by the Chicago Board of Trade’s (CBOT) attempt to launch a new contract with
proper convexity characteristics.

EXAMPLE:

The Chicago Board of Trade’s board of directors last week approved a plan to launch
5-and 10-year U.S.-dollar denominated interest rate swap futures and options contracts.
Compared with the over-the-counter market, trading of swaps futures will reduce admin-
istrative cost and eliminate counterparty risk, the exchange said.

The CBOT's move marks the second attempt by the exchange to launch a successful swap
futures contract. Treasuries were the undisputed benchmark a decade ago. They are not
treated as a benchmark for valuation anymore. People price off the swap curve instead,
said a senior economist at the CBOT.

The main difference between the new contract and the contract that the CBOT de-listed
in the mid-1990s is that the new one is convex in form rather than linear. It's one less
thing for end users to worry about, the economist said, noting that swap positions are
marked to market on a convex basis. Another critical flaw in the old contract was that it
launched in the three and five-year, rather than the five and ten-year maturities, which
is where most business takes place.

The new swaps contracts will offer institutional investors such as bank treasurers, mort-
gage passthrough traders, originators, service managers, portfolio managers, and other
OTC market participants a vehicle for hedging credit and interest rate exposure, the
exchange said. (IFR, Issue 1393, July 21, 2001)

This is an excellent example that shows the importance of convexity in contract design.

Futures contracts are used for hedging by traders. If the convexity of the hedging instrument is
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different than the convexity of the risks to be hedged, then the hedge may deteriorate as volatility
changes. In fact, as volatility increases, the more convex instrument may yield gayhera
gains and this will influence its price.

4.2.2. Convexity of FRAs

Now consider the case of forward rate agreements (FRAS). As discussed in Chapter 4, FRAs are
instruments that can be used to fix, at tityethe risk associated with a Libor ratg, , that will
be observed at timg, and that has a tenor éfexpressed imlays per yeat* The question is
whenwould this FRA be settled. This can be done in different ways, leading to slightly different
instruments. We can envisage three types of FRAs.

One way is to sef,, attimet;, but then, settle at timg + §. This would correspond to the
“natural” way interest is paid in financial markets. Hence, at timet,, the value of the FRA
will be zero and at time; + 6 the FRA buyer will receive or pay

[Ly, — Fy,]NS (73)

depending on the sign of the difference. The FRA seller will have the opposite cash flow.

The second type of FRA trades much more frequently in financial markets. The description
of these is the same, except that the FRA is settled at#jmastead of at; + 6. At time ¢;,
when the Libor ratd.;, is observed, the buyer of the FRA will make (receive) the payment

[Ltz — Fto](s

1+ Lo (74)

This is the previous settlement amoudiigcountedrom timet; + 6 to timet;, using the time;
Libor rate. Figure 9-6 shows an example to the payoff of a 12 month FRA.

Gain/Loss

0.025

00 L L L L L L Lb
0025 0.05 075 01 0125 015 0175 >

-0.025

—-0.05

-0.075

FIGURE 9-6

14 The year is assumed to be 360 days.
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Of even more interest for our purpose is a third type of FRA contract, a Libor-in-arrears
FRA, where the Libor observed at timgis used to settle the contract at tiygeaccording to

[Lti - fto](sN (75)

Here, f;, is the FRA rate that applies to this particular type of FRANote that we are using
a symbol different than thé}, , because the two FRA rates are, in general, different from each
other due to convexity differences in the two contracts.

The question to ask here is under what conditions would the fateand f;, differ from
each other? The answer depends indeed on the convexity characteristics of the underlying
contracts. In fact, market practitioners approximate these differences emingxity adjust-
mentfactors.

Prepayment Options

A major class of instruments that have convexity by design is the broad array of securities
associated wittmortgagesA mortgage is a loan secured by the purchaser of a residential or
commercial property. Most fixed-rate mortgages have a critical property. They contain the right
to prepay the loan. The mortgage receiver has the right to pay the remaining balance of the loan
at any time, and incur only a small transaction cost. This is called a prepayment option and
introduces negative convexity in mortgage-related securities. In fact, the prepayment option is
equivalent to an American style put option written on the mortgageitate the mortgage rate

R, falls below a limit RX, the mortgage receiver will pay back the original amount denoted
by N, by refinancing at the new rat®,. Instead of making a stream of fixed annual interest
paymentsk,, N, the mortgage receiver has the option (but not the obligation) to pay the annual
interestR;, N at some time;. The mortgage receiver may exercise this optioRif < R,.

The situation is reversed for the mortgage issuer.

The existence of such prepayment options creates negative convexity for mortgage-backed
securities (MBS) and other related asset classes. Since the prepayment option involves an
exchange of one fixed stream of payments against another fixed stream, it is clear that interest
rate swaps play a critical role in hedging and risk-managing these options dynamically. We will
deal with this important topic in Chapter 21.

A Special Instrument: Quantos

Quanto type financial products form a major class of instruments where price depends on
correlations At the end of this chapter, we will look at these in detail and study the finan-
cial engineering of quantos by discussing their characteristics and other issues. This can be
regarded as another example to the methods introduced in Chapters 8 and 9. We will consider
pricing of quantos in Chapter 12.

A Simple Example
Consider the standard currency swap in Figure 9-7. There are two cash flows, in two currencies,

USD and EUR. The principal amounts are exchanged at the start date and reexchanged at the
end date. During the life of the swap, floating payments based on USD Libor are exchanged for

15 Similarly, we can have Libor-in-arrear swaps on the generalization of this type of FRA contract.
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FIGURE 9-7

floating payments based on EUR Libor. There will be a small known spread involved in these
exchanges as well.

The standard currency swap of Figure 9-7 will now be modified in an interesting way. We
keep the two floating Libor rates the same, Hatceall payments to be made in one currency
only, say USD. In other words, the calculated EUR Libor indexed cash flows will be paid
(received) in USD. This instrument is calleqaanto swapor differential swapln such a swap,
the principal amounts would be in the same currency, and there would be no need to exchange
them. Only net interest rate cash flows will be exchanged.

EXAMPLE:

Suppose the notional principal is USD30 million. Quotes on Libor are as follows:

TENOR YEN Libor DOLLAR Libor

3-month 0.055 1.71
6-month 0.185 1.64
12-month 0.065 1.73

In a quanto swap, one party would like to receive 6-month USD Libor and pay 6-month
JPY Libor for 1 year. However, all payments are made in USD. For example, if the first
settlementis according to the quotes givenin the table, in 6 months this party will receive:

1 1 1
30,000,000(.0164)(;) — 30,000,000(0.00185)(3;) — 30,000,000(3)e  (76)

where the: is a constant spread that needs to be determined in the pricing of this quanto
swap. Note that the JPY interest rate is applied to a USD denominated principal.

In this type of swap, the two parties are exposed to the risk of interest rate differentials.
However, at least one of them is not exposed to currency risk.

Why would anyone be interested in quanto swaps? Note that even after the gpsead
included, the interest cost paiddollars,

JPY Libor+ ¢ (77)

may be significantly less than USD Libor rates. This way, the party that receives USD Libor
and pays JPY Libor (in USD) may be lowering funding costs substantially. Accordingly, the
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market would see interest in such quanto swaps when the short ends of the yield curves in two
major currencies are significantly different. Banks could then propose these instruments to their
clients as a way of “reducing” funding costs. Of course, from the clients’ point of view, quanto
swaps still involve an interest rate risk and, possibly, an exchange rate risk. If the underlying
yield curves shift in unexpected ways, losses may be incurred.

The following example illustrates these from the point of view of British pound and Swiss
franc interest rates.

EXAMPLE:

With European economies at a very different point in the trade cycle, corporates are
looking to switch their debts into markets offering the cheapest funding. But whereas
most would previously have been dissuaded by foreign exchange risk, the emergence of
guanto products has allowed them to get the best of both worlds.

With quanto swaps, interest is paid in a different currency to that of the reference index,

the exchange rate being fixed at the outset of the swap. As a result, the product can
provide exposure to a non-domestic yield curve without the accompanying exchange
rate risks.

In recent weeks this type of product has proved increasingly appealing to UK corporates
that have entered into a swap in which the paying side is referenced to Swiss Libor but
the returns are paid in sterling. Swiss franc Libor is still low relative to sterling Libor
and although the corporate ends up paying Swiss Libor plus a spread, funding costs
are often still considerably cheaper than normal sterling funding. Deals have also been
referenced to German or Japanese Libor.

However, derivatives officials were also keen to point out that quanto products are far
from being risk-free. “Given that the holder of the swap ends up paying Swiss Libor plus
a spread, the curves do not have to converge much to render the trade uneconomic,’
said one. (IFR, Issue 1190, July 5 1997.)

5.1.1. Quantos in Equity

The notion of a quanto instrument can be applied in other financial markets. For example, a
foreign investor may want to have exposure to Japanese equity markets without having to incur
currency risk. Then, a quanto contract can be designed such thatthe gains and losses of anindexin
Japanese equities are paid annually in the foreign investors’ domestic currency instead of in yen.

Pricing

The pricing of quanto contracts raises interesting financial engineering iSswesdiscuss a
simple case to illustrate quantos. First, fix the underlying. Assume that we are dealing with
a particularforeign currencydenominated stocls;. Without loss of generality, suppose the
domesticcurrency is USD, the foreign currency is euro, and the stock is European.

A dollar-based investor would like to buy the stock, and benefit from potential upside in
European markets, but dislikes currency exposure to euro. The investor desires exposure to
underlying equity risk only. To accommodate his wish, the bank proposes purchasing the stock
via aquanto forward An expiration datd’ is chosen, and the current exchange rate EUR/USD,

16 This is an example of the measure switching techniques to be discussed in Chapter 13.
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e; is used to calculate the timBsettlement. The forward contract has USD pii¢eand settles
according to

Vr = (e:St — F}) (78)

Here, theV is the timeT" value of the contract. It is measured in the domestic currency, and
will be positive if the stock appreciates sufficiently; otherwise, it will be negative. Fhis

the forward price of the quanto contract Sf and has to be determined by a proper pricing
strategy.

The Mechanics of Pricing

Suppose the current time 4sand a forward quanto contract &f}. is written with settlement
dateT = t + A. Suppose also that at timféthere are only three possible states of the world,
{w!,w?,w3}. The following table gives the possible values of four instruments, the foreign
stock, a foreign deposit, a domestic deposit, and a forward FX contract on the exchange rate

Timetprice  valuein w? valuein w? valuein w?
S Stia Stia Siia

1USD (1+7rA) (14+rA) (1+rA)

leg eria(l+7*A) et A(1+7*A) ep A(l+7*A)
0 fe— 6t1+A fe— €?+A fe— e?—rA

In this table, the first row gives the value of the foreign stock in the three future states of the
world. These are measured in the foreign currency. The second row represents what happens to
1 dollar invested in a domestic savings account. The third row shows what happens when 1 unit
of foreign currency is purchasedatdollars and invested at the foreign rate

The forward exchange rajg is priced as

fi=eg it (19)
wheree; is the current exchange rate. In this example, we are assuming that the domestic and
foreign interest rates are constantrandr* respectively. Now consider the quanto forward
contract with current pricé; mentioned earlier. Thé} will be determined at time, and the
contract will settle at timg@” = ¢ + A. Depending on which state occurs, the settlement amount
will be one of the following:

{(Stiner — Fp), (Siiae: — Fy), (S ae — Fr)} (80)

These amounts are all in USD. What is the arbitrage-free valugdf

We can use three of the four instruments listed to form a portfolio with weighis= 1, 2, 3
that replicate the possible valuesepb;, , at each state exactly. This will be similar to the cases
discussed in Chapter 7. For example, using the first three instruments, for each state we can write

Statew'! MSiEaetin + (1 +7A) + Azefa(1+77A) = Sfiaer (81)
Statew? MSiIaetin + A1+ 7A) + Azef  A(L+77A) = SiZaer (82)
Statew? MS;Iael A+ A1+ 7A) + Az, A(L+17"A) = S;Paer (83)

In these equations the right-hand side is the future value of the foreign stock measured at the
current exchange rate. The left-hand side is the value of the replicating portfolio in that state.
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These form three equationsin three unknowns, and, in general, can be solved for the unknown
Ai. Once these portfolio weights are known, the current cost of putting the portfolio together
leads to the price of the quanto:

A1 Sfet + Ao + Azeq (84)
This USD amount needs to be carried to tifiesince the contract settles’at This gives

Ft = [/\15’:6,5 + )\2 + )\36t](1 + TA) (85)

EXAMPLE:

Suppose we have the following data on the first three rows of the previous table:

Timet price valuein w? valuein w? valuein w3
100 115 100 90
1 USD (L + .05 A) (1+.05A) (14 .05 A)

1EURX 0.98 (I +.03A)1.05 (1+.03A)0.98 (L +.03A).90

What is the price of the quanto forward?

We set up the three equations

A1(1.05)115 4+ Ao (1 4 .05A) + A31.05(1 + .03A) = 0.98(115) (86)
A1(0.98)100 + Ao (1 4 .05A) + A30.98(1 + .03A) = 0.98(100) (87)
A1(0.90)90 + A2(1 4+ .05A) + A30.90(1 + .03A) = 0.98(90) (88)

We select the expiratioA = 1, for simplicity, and obtain
A1 =0.78 (89)
Ay = 60.67 (90)
A3 = —41.53 (91)

Borrowing 42 units of foreign currency, lending 61 units of domestic currency, and
buying 0.78 units of the foreign stock would replicate the value of the quanto contract
at timet + 1. The price of this portfolio at will be

100A10.98 + A2 + 0.98\3 = 96.41 (92)
If this is to be paid at time + A, then it will be equal to the arbitrage-free value bf:
F, = (1.05)96.41 = 101.23 (93)

This example shows that the value of the quanto feature is related to the correlation between the
movements of the exchange rate and the foreign stock. If this correlation is zero, then the quanto
will have the same value as a standard forward. If the correlation is positive (negative), then the
quanto forward will be less (more) valuable than the standard forward. In the example above,
the exchange rates and foreign stock were positively correlated and the quantoed instrument
cost less than the original value of the foreign stock.

Where Does Convexity Come In ?

The discussion of the previous section has shown that, in a sonpl@eriodsetting with three
possible states of the world, we can form a replicating portfolio for the quantoed asset payoffs
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at a future date. As the number of states increases and time becomes continuous, this type
of replicating portfolio needs readjustment. The portfolio adjustments would, in turn, lead to
negative or positive trading gains depending on the sign of the correlation, similar to the case of
options. This is where volatilities become relevant. In the case of quanto assets there are, at least,
two risks involved, namely, exchange rate and foreign equity or interest rates. The covariance
between these affects pricing as well.

The quanto feature will have a positive or negative value at tiptie to the trading gains
realized during rebalancing. Thus, quantos form another class of assets where the nonnegli-
gibility of second order sensitivities leads to dependence of the asset price on variances and
covariances.

Practical Considerations

At first glance, quanto assets may appear very attractive to investors and portfolio managers.
After all, a contract on foreign assets is purchased and all currency risk is eliminated. Does this
mean we should alwaysuantd

Here again, some real-life complications are associated with the instrument. First of all, the
purchase of a quanto may involve an upfront payment and the quanto characteristics depend on
risk premia, bid-ask spreads, and on transaction costs associated with the underlying asset and
the underlying foreign currency. These may be high and an approximate hedge using foreign
currency forwards may be cheaper in the end.

Second, quanto assets have expiration dates. If, for some unforeseen reason, the contract is
unwound before expiration, further costs may be involved. More important, if the foreign asset
is held beyond the expiration date, the quanto feature would no longer be in effect.

Finally, the quanto contract depends on teerelation between two risk factors, and this
correlation may benstable Under these conditions, the parties that are long or short the quanto
have exposure to changes in this correlation parameter. This may significantly affect the mark-
to-market value of the quanto contracts.

Conclusions

Pricing equations depends on one or more risk factors. When the pricing functions are nonlinear,
replicating portfolios that use linear assets with periodically adjusted weights will lead to positive
or negative cash flows during the hedging process. If the underlying volatilities and correlations
are significant, trading gains from these may exceed the transaction costs implied by periodic
rebalancing, and the underlying nonlinearity can be traded.

In this chapter we saw two basic examples of this: one from the fixed income sector which
made convexity of bonds valuable, and the second from quanto instruments, which also brought
in the covariance between risks. The example on quantos is a good illustration of what happens
when term structure models depend on more than one factor. In such an environment, the
covariances as well as the volatilities between the underlying risks may become important.

Suggested Reading

Two introductory sources discuss the convexity gains one can extract from fixed-income instru-
ments. They ar€uckman (2002) andlegadeesh and Tuckman (1999). The convexity differences
between futures and forwards are clearly handlediin| (2002). The discussion of the quanto
feature used here is frofiros (1998), which is irDeRosa (1998).Wilmott (2000) has a nice
discussion of quantoed assets as weHrt (1977) is a very good source on this chapter.
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Exercises

1. You are given the following default-free long bond:
Face value: 100
Issuing price: 100
Currency: USD
Maturity: 30 years
Coupon: 6%
No implicit calls or puts.

Further, in this market there are no bid-ask spreads and no trading commissions. Finally,

the yield curve is flat and moves only parallel to itself.
There is, however, a futures contract on the 1-year Libor rate. The price of the contract

is determined as

Vi =100(1 - fy) (94)
wheref; is the “forward rate” on 1-year Libor.

(a) Show that if the yield of the 30-year bondyis then at all times we have
yr = [t (95)

(b) Plot the pricing functions fov; and the bond.

(c) Suppose the current yield is at 7%. Put together a zero-cost portfolio that is
delta-neutral toward movements of the yield curve.

(d) Consider the following yield movements over 1-year periods:

9%, 7%, 9%, 7%, 9%, 7% (96)

What are the convexity gains during this period?
(e) What other costs are there?

2. You are given a 30-year bond with yield The yield curve is flat and will have only
parallel shifts. You have a liquid 3-month Eurodollar contract at your disposition. You

can also borrow and lend at a rate of 5% initially.

(a) Using the long bond and the Eurodollar contract, constuldltahedged

portfolio that is immune to interest rate changes.
(b) Now suppose you observe the following interest rate movements over a period

of 1 year:
{.06,.04, .06, .04, .06, .04} 97)

These observations are each two months apart. What are your convexity gains
from a long volatility position?

3. Consider the data given in the previous question.

(a) Suppose an anticipated movement as in the previous question. Market
participants suddenly move to an anticipated trajectory such as

{.08,.02,.08,.02,.08,.02} (98)

Assuming that this was the only exogenous change in the market, what do
you think will happen to the yield on the 30-year bond?
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4. Assuming that the yield curve is flat and has only parallel shifts, determine the spread
between the paid-in-arrear FRAs and market-traded linear FRAs if the FRA rates are
expected to oscillate as follows around an initial rate:

{+.02, —.02, +.02, —.02, +.02, —.02, } (99)
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CASE STUDY: Convexity of Long Bonds, Swaps, and Arbitrage

The yield of a long bond tells you how much you can earn from this bond. Correct? Wrong. You
can earn more.

The reason is that long bonds and swaps have convexity. If there are two instruments, one
linear and the other nonlinear, and if these are a function of the same risk factors, we can form
a portfolio that isdelta-neutral and that guarantees some positive return.

This is a complex and confusing notion and the purpose of this case study is to clarify this
notion a bit.

At first, the case seems simple. Take a look at the following single reading provided on an
arbitrage position taken by market professionals and answer the questions that follow.

The more sophisticated traders in the swaps market—or at least those who have been willing
to work alongside their in-house quants—have until recently been playing a game of one-
upmanship to the detriment of their more naive interbank counterparties. By taking into account
the convexity effect on long-dated swaps, they have been able to profit from the ignorance of
their counterparties who saw no reason to change their own valuation methods.

More specifically, several months ago several leading Wall Street US dollar swaps houses—
reportedly JP Morgan and Goldman Sachs among them—realized that there was more value
than met the eye when pricing Libor-in-arrears swaps. According to London traders, they began
to arbitrage the difference between their own valuation models and those of “swap traders who
still relied on naive, traditional methods” and transacting deals where they would receive Libor
in arrears and pay Libor at the start of the period, typically for notional amounts af108m
and over.

Depending on the length of the swap and the Libor reset intervals, they realized that they
could extract up to an additional 8bp—10bp from the transaction, irrespective of the shape of
the yield curve. The counterparty, on the other hand, would see money “seep away over the life
of the swap, even if it thought it was fully hedged,” said a trader.

The added value is only significant on long-dated swaps—typically between five and 10
years—and in particular those based on 12-month Libor rather than the more traditional
six-month Libor basis. This value is due to the convexity effect more commonly associated
with the relationship between yields and the price of fixed income instruments.

Ittherefore pays to be long convexity, and when applied to Libor-in-arrears structures proved
to be profitable earlier this year. The first deals were transacted in New York and were restricted
to the US dollar market, butin early May several other players were alerted to what was going on
in the market and decided to apply the same conceptin London. One trader expressed surprise at
the lack of communication between dealers at different banks, a fact which allowed the arbitrage
to continue both between banks directly and through swaps brokers.

Also, “none of the US banks active in the market was involved in trying to exploit the same
opportunities in other currencies,” he said, adding “you could play the same game in sterling—
convexity applies to all currencies.”

In fact, there was one day in May when the sterling market was flooded with these trans-
actions, and it “lasted for several days” according to a sterling swaps dealer, “until everyone
moved their prices out,” effectively putting a damper on further opportunities as well as making
it difficult to unwind positions.

Further, successful structures depend on cap volatility as the extra value is captured by
selling caps against the Libor-in-arrears being received, in addition to delta hedging the swap.
In this way value can be extracted from yield curves irrespective of the slope.

“In some cap markets such as the yen, volatility isn't high enough to make the deal work,’
said one dealer. Most of the recent interbank activity has taken place in US dollars, sterling,
and Australian dollars.
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As banks have become awaredloé arbitrage,opportunities have become rarer, at least in
the interbank market. But as one dealer remarked, “the reason this [structure] works is because
swap traders think they know how to value Libor-in-arrears swaps in the old way, and they stick
to those methods.”

“Paying Libor in arrears without taking the convexity effect into account,” he added, “is like
selling an option for free, but opportunities will still exist where traders stick to the old pricing
method.”

Many large swap players last week declined to comment, suggesting that the market is still
alive, although BZW in London, which has been active in the market, did say that it saw such
opportunities as a chance to pass on added value to its own customers. (IFR, issue 1092 July
29, 1995.)

Questions

. First the preliminaries. Explain what is meant by convexity of long-dated bonds.

What is meant by the convexity of long-dated interest rate swaps?

. Explain the notion of convexity using a graph.

. If bonds are convex, which fixed income instrument is not convex?

. Describe the cash flows of FRAs. When are FRASs settled in the market?

. What is the convexity adjustment for FRAs?

. What is a cap? What volatility do you buy or sell using caps?

. Now the real issue. Explain the position taken by “knowledgeable” professionals.

. In particular, is this a position on the direction of rates or something else? In fact, can you
explain why the professionals had to hedge their position using caps or floors?

. Do they have to hedge using caps only? Can floors do as well? Explain your answer
graphically.

. Is this a true arbitrage? Are there any risks?
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