
C H A P T E R 9

Engineering Convexity Positions

1. Introduction

How can anyone trade volatility? Stocks, yes. Bonds, yes. But volatility is not even anasset.
Several difficulties are associated with defining precisely what volatility is. For example, from
a technical point of view, should we define volatility in terms of the estimate of the conditional
standard deviationof an asset priceSt?√

Et[St − Et[St]]2 (1)

Or should we define it as the averageabsolutedeviation?

Et [|St − Et[St]|] (2)

There is no clear answer, and these two definitions of statistical volatility will yielddiffer-
entnumerical values. Leaving statistical definitions of volatility aside, there are many instances
where traders quote, directly, the volatility instead of the dollar value of an instrument. For exam-
ple, interest rate derivatives markets quotecap-floorandswaptionvolatilities. Equity options
provideimplied volatility. Traders and market makers trade the quoted volatility. Hence, there
must be some way of isolating and pricing what these traders call volatility in their respective
markets.

We started seeing how this can be done in Chapter 8. Options becamemore valuablewhen
“volatility” increased, everything else being the same. Chapter 8 showed how these strategies
can quantify and measure the “volatility” of an asset inmonetaryterms. This was done by
forming delta-neutral portfolios, using assets with different degrees of convexity. In this chap-
ter, we develop this idea further, apply it to instruments other than options, and obtain some
generalizations. The plan for this chapter is as follows.

First, we show how convexity of a long bond relates toyield volatility. The higher the
volatility of the associated yield, the higher the benefit from holding the bond. We will discuss
the mechanics of valuing this convexity. Then, we compare these mechanics with option-related
convexity trades. We see some close similarities and some differences.At the end, we generalize
the results to any instrument with different convexity characteristics. The discussion associated
with volatility tradingitself has to wait until Chapter 13, since it requires an elementary treatment
of arbitrage pricing theory.
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2. A Puzzle

Here is a puzzle. Consider the yield curve shown in Figure 9-1. The 10-year zero coupon bond
has a yield to maturity that equals 5.2%. The 30-year zero, however, has a yield to maturity of
just 4.94%. In other words, if we buy and hold the latter bond 20moreyears, we would receive
a loweryield during its lifetime.

It seems a bit strange that the longer maturity is compensated with a lower yield. There are
several economic or institutional explanations of this phenomenon. For example, expectations
for inflation 20 years down the line may be less than the inflationary expectations for the next
10 years only. Or, the relative demands for these maturities may be determined by institutional
factors and, because players don’t like to move out of their “preferred” maturity, the yield
curve may exhibit such inconsistencies. Insurance companies, for example, need to hedge their
positions on long-term retirement contracts and this preference may lower the yield and raise
the price of long bonds.

But these explanations can hardly fully account for the observed anomaly. Institutional
reasons such aspreferred habitatand treasury debt retirement policies that reduce the supply of
30-year treasuries may account for some of the difference in yield, but it is hard to believe that
an additional 20-year duration is compensated so little. Can there be another explanation?

In fact, the yield to maturity may not show all the gains that can be realized from holding a
long bond. This may be hard to believe, as yield to maturity isby definitionhow much the bond
will yield per annum if kept until maturity.

Yet, there can be additional gains to holding a long bond, due to the convexity properties of
the instrument, depending on what else is available to trade “against” it, and depending on the
underlying volatility. These could explain the “puzzle” shown in Figure 9-1. The 4.94% paid by
the 30-year treasury,plussome additional gains, could exceed the total return from the 10-year
bond. This is conceivable since the yield to maturity and thetotal returnof a bond are, in fact,
quite different ways of measuring financial returns on fixed-income instruments.

3. Bond Convexity Trades

We have already seen convexity trades within the context of vanilla options. Straightforward
discount bonds, especially those with long maturities, can be analyzed in a similar fashion and
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have exposure to interest rate volatility. In fact, a “long” bond and a vanilla option areboth
convex instruments and they both coexist with instruments that are either linear or have less
convexity.1 Hence, adelta-neutral portfolio can be put together for long maturity bonds to
benefit from volatility shifts. The overall logic will be similar to the options discussed in the
previous chapter.

Consider a long maturity default-free discount bond with priceB(t, T ), with t < T . This
bond’s price at timet can be expressed using the corresponding timet yield, yT

t :

B(t, T ) =
1

(1 + yT
t )T

(3)

Fort = 0, and T = 30, this function is plotted against various values of the 30-year zero-coupon
yield, in Figure 9-2. It is obvious that the price is aconvexfunction of the yield.

A short bond, on the other hand, can be represented in a similar space with an almost linear
curve. For example, Figure 9-3 plots a 1-year bond priceB(0, 1) against a 1-year yieldy1

0 . We
see that the relationship is essentially linear.2

The main point here is that, under some conditions, using these two bonds we can put together
a portfolio that will isolate bond convexity gains similar to the convexity gains that the dynamic
hedging of options has generated. Thus, suppose movements in the two yieldsy1

t andy30
t are

perfectly correlated over timet.3 Next, consider a trader who tries to duplicate the strategy
of the option market maker discussed in the previous chapter. The trader buys the long bond
with borrowed funds anddelta-hedges the first-order yield exposure by shorting an appropriate
amount of the shorter maturity bond.

This trader will have to borrowB(0, 30) dollars to buy and fund the long bond position. The
payoff of the portfolio

{Long bond, loan ofB(0, 30) dollars} (4)

is as shown in Figure 9-2b as curveBB′. Now compare this with Figure 9-2c. Here we show
the profit/loss position of a market maker who buys an at-the-money “put option” on the yield
y30

t . At expiration timeT , the option will pay

P (T ) = max[y30
0 − y30

T , 0] (5)

This option is financed by a money market loan so that the overall position is shown as the
downward sloping curveBB′.4 We see a great deal of resemblance between the two positions.
Given this similarity between bonds and options, we should be able to isolate convexity or
gammatrading gains in the case of bonds as well. In fact, once this is done, using an arbitrage
argument, we should be able to obtain a partial differential equation (PDE) that default-free

1 The short maturity bonds are almost linear. In the case of vanilla options, positions on underlying assets such as
stocks are also linear.

2 In fact, a first-order Taylor series expansion around zero yields

B(0, 1) =
1

(1 + y1
0)

∼= (1 − y1
0)

if the y1
0 is “small.”

3 This simplifying assumption implies that all bonds are affected by thesameunpredictable random shock, albeit
to a varying degree. It is referred to as the one factor model.

4 The option price is the curveBB′. The curve shifts down by the money market loan amountP0, which makes
the position one of zero cost.
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discount bond prices will satisfy. This PDE will have close similarities to the Black-Scholes
PDE derived in Chapter 8.

The discussion below proceeds under some simplifying and unrealistic assumptions. We use
the so-called one-factor model. Our purpose is tounderstandthe mechanics of volatility trading
in the case of bonds and this assumption simplifies the exposition significantly. Our context is
different than in real life, where fixed-income instruments are affected by more than a single
common random factor. Thus, we make two initial assumptions:

1. There is ashortand alongdefault-free discount bond with maturitiesT s andT , respec-
tively. Both bonds areliquid and can be traded without any transaction costs.
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2. The two bond prices depend on the same risk factor denoted byrt. This can be interpreted
as a spot interest rate that captures all the randomness at timet, and is the single factor
mentioned earlier.

The second assumption means that the two bond prices are a function of the short ratert.
These functions can be written as

B(t, T s) = S(rt, t, T
s) (6)

and

B(t, T ) = B(rt, t, T ) (7)

whereB(t, T s) is the time-t price of the short bond and theB(t, T ) is the time-t price of the long
bond. We postulate that the maturityT s is such that the short bond priceB(t, T s) is (almost)
a linear function of rt, meaning that the second derivative ofB(t, T s) with respect tort is
negligible.

Thus, we will proceed as if there was a single underlying risk that causes price fluctuations
in a convex and a quasi-linear instrument, respectively. We will discuss the cash gains generated
by the dynamically hedged bond portfolio in this environment.

3.1. Delta-Hedged Bond Portfolios

The trader buys the long bond with borrowed funds and then hedges the downside risk implied
by the curveAA′ in Figure 9-4. The hedge for the downside risk will be a position that makes
money whenrt increases, and loses money whenrt declines. This can be accomplished by
shorting an appropriate number of the short bond.

In fact, the trick to form adelta-neutral portfolio is the same as in Chapter 8. Take the partial
derivative of the functionsS(rt, t, T

s) andB(rt, t, T ) with respect tort, evaluate them at point
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rt0 , and use these to form a hedge ratio,ht:

ht =

(
∂B(rt,t,T )

∂rt

)
(

∂S(rt,t,T s)
∂rt

) (8)

=
Br

Sr
(9)

TheSr is assumed to be a constant, given the quasi-linearity of the short bond price with respect
to rt. Theht is a function ofrt, since theBr is not constant due to the long bond’s convexity.
Given the value ofrt0 , theht can be numerically calculated, andht0 units of the short maturity
bond would besoldshort att0.

The change in the value of this portfolio due to a small change in the spot rateΔrt only, is
given by

Δ [B(rt, t, T ) − htS(rt, t, T
s)] = BrΔrt − Br

Sr
SrΔrt + R (10)

= R (11)

since theSr terms cancel out.R is the remainder term of the implied Taylor series approximation,
or Ito’s Lemma in this case, which depends essentially on the second derivative,Brr, and onrt
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volatility. TheSr is approximately constant. This means that the net position,

{BorrowB(t, T ) dollars, Buy oneB(t, T ), Shortht units ofB(t, T s)} (12)

will have the familiar volatility position shown in the bottom part of Figure 9-4. Asrt fluctuates,
this position is adjusted by buying and (short) selling an appropriate number of the nonconvex
asset. The new value of partial derivative,ht, is used at each readjustment. Again, just as in
Chapter 8, this will make the practitioner “sell high” and “buy low” (or vice versa). As a result
of these hedge adjustments, the counterparty whoownsthe long bond will earngammaprofits.
These trading gains will be greater as volatility increases. Hence, we reach the result:

• Everything else being the same, the greater the volatility ofrt, the more “valuable” the
long bond.

This means that as volatility increases,ceteris paribus, the yield of the convex instruments
should decline, since more market participants will try to put this trade in place and drive its
price higher.

Example:

Suppose that initially the yield curve is flat at 5%. The value of a 30-year default-free
discount bond is given by

B(0, 30) =
1

(1 + .05)30
(13)

= 0.23 (14)

The original delta of the bond,Dt0 at rt0 = .05 will be:

Dt0 = − 30
(1 + rt0)31

(15)

= −6.61 (16)

A 1-year short bond is assumed to have an approximately linear pricing formula

B(t0, T s) = (1 − rt0) (17)

= 0.95 (18)

The market maker will borrow 0.23 dollars, buy one long bond, and then hedge this
position byshorting

−6.61
−1.0

(19)

unitsof the short bond. (Given linearity approximation the short bond has unit interest
sensitivity.)

A small time,Δ, passes. All rates change,rt moves to 6%. The portfolio value will move

ΔB(t, T ) − htΔB(t, T s) =
[

1
(1 + .06)30

− 1
(1 + .05)30

]
− 6.61 [(1 − .06) − (1 − .05)] (20)

= 0.009 (21)
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Note that in calculating this number, we are assuming thatΔ is small. Only the effect
of changingrt is taken into account. In a sense, we are using a framework similar to
partial derivatives.

The new delta is calculated as−4.9. The adjusted portfolio should be short 4.9 units of
the short bond. Thus,

(6.6 − 4.9) = 1.7 (22)

units need to be covered at a price of 0.94 each to bring the position to the desired
delta-neutral state.

This leaves a trading profit equal to

1.7(0.95 − 0.94) = $.017 (23)

Another period passes, withrt going back tort2 = .05 . The cycle repeats itself. The delta
will change again, the portfolio will be readjusted, and trading profits will continue to
accumulate.

This example is approximate, since not all costs of the position are taken into account.
The example started with the assumption of a flat yield curve, which was later relaxed and the
yields became volatile. However, we never mentioned what causes this change. It turns out that
volatility leads to additional gains for long bond holders and this increases the demand for them.
As a result,ceteris paribus, long bond yields woulddeclinerelative to short bond yields. Hence,
the introduction of yield volatility changed the structure of the initial yield curve.

3.2. Costs

What are the costs (and other gains) of putting together such a long volatility position using
default-free discount bonds? First, there is the funding cost. To buy the long bond,B(t, T ) funds
were borrowed atrt percent per annum. As long as the position is kept open, interest expense
will be incurred. Second, as time passes, the pricing function of the bond becomes less and less
convex, and hence the portfolio’s trading gains will respond less to volatility changes. Finally,
as time passes, the value of the bonds will increase automatically even if the rates don’t come
down.

3.3. A Bond PDE

A partial differential equation consisting of the gains from convexity of long bonds and costs
of maintaining the volatility position can be put together. Under some conditions, this PDE has
an analytical solution, and an analytical formula can be obtained the way the Black-Scholes
formula was obtained.

First we discuss the PDE informally. We start with the trading gains due to convexity. These
gains are given by the continuous adjustment of the hedge ratioht, which essentially depends
on theBr, except for a constant of proportionality, since the hedging instrument is quasi-linear
in rt. As rt changes, the partialBr changes, and this will be captured by the second derivative.
Then, convexity gains during a small time intervalΔ is a function, as in Chapter 8, of

1
2

∂2B(t, T )
∂r2

t

(σ(rt, t)rt

√
Δ)2 (24)

This is quite similar to the case of vanilla options, except that here theσ(rt, t) is the percentage
short rate volatility. Short bond interest sensitivity will cancel out.
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If we model therisk-neutral dynamicsof the short ratert as

drt = μ(rt, t)dt + σrtdWt t ∈ [0, T ] (25)

where percentage volatilityσ is constant, thesegammagains simplify to

1
2
Brrσ

2r2
t Δ (26)

during a small periodΔ.5

To these, we need to add (subtract) other costs and gains that the position holder is subject
to. The interest paid during the periodΔ on borrowed funds will be

rtB(t, T )Δ (27)

The other gain (loss) is the direct effect of passing time

∂B(t, T )
∂t

Δ = BtΔ (28)

As time passes, bonds earn accrued interest, and convexity declines due to “roll-down” on the
yield curve. The interest earned due to shorting the linear instrument will cancel out the cost of
this short position.

The final component of the gains and losses that the position is subject to duringΔ is more
complex than the case of a vanilla call or put. In the case of the option, the underlying stock,
St, provided a very gooddelta-hedging tool. The market maker sold∂∂St

C(St, t) units of the
underlyingSt in order to hedge a long call position. In the present case, the underlying risk is
not the stock priceSt or some futures contract. The underlying risk is the spot ratert, and this
is not an asset. That is to say, the “hedge” is notrt itself, but instead it is an assetindirectly
influencedby rt. Also, randomness of interest rates requires projecting future interest gains and
costs. All these complicate the cash flow analysis.

These complications can be handled by positing that thedrift termμ(rt, t) in the dynamics,6

drt = μ(rt, t)dt + σrtdWt, t ∈ [0, T ] (29)

represents therisk-free expected changein the spot rate over an infinitesimal intervaldt.7 Using
this drift, we can write the last piece of gains and losses over a small intervalΔ as (Vasicek
(1977)):

μ(rt, t)BrΔ (30)

Adding all gains and losses during the intervalΔ, we obtain thenetgains from the convexity
position:

1
2
Brrσ

2r2
t Δ + μ(rt, t)BrΔ − rtBΔ + BtΔ (31)

5 Note that we are using the notation

∂2B(t, T )
∂r2

t

= Brr

6 See Appendix 8-2 to Chapter 8 for a definition of this SDE.

7 Chapter 11 will go into the details of this argument that uses risk-neutral probabilities.
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In order to preclude arbitrage opportunities, this sum must equal zero. Cancelling the common
Δ terms, we get the PDE for the bond:

1
2
Brrσ

2r2
t + μ(rt, t)Br − rtB + Bt = 0 (32)

The boundary condition is simpler than in the case of vanilla options and is given by

B(T, T ) = 1, (33)

the par value of the default-free bond at maturity dateT .

3.4. PDEs and Conditional Expectations

In this PDE, theunknownis again afunctionB(t, T ). This function will depend on the random
processrt, thet, as well as other parameters of the model. The most important of these is the
short rate volatility,σ. If rt is the continuously compounded short rate, the solution is given by
the conditional expectation

B(t, T ) = EP̃
t

[
e−∫ T

t
rudu

]
(34)

where,P̃ is an appropriate probability. In other words, taking appropriate partial derivatives of
the right-hand side of this expression, and then plugging these in the PDE would make the sum
on the left-hand side of equation (32) equal to zero.8

It is interesting to look at the parallel with options.The pricing function forB(t, T ) was based
on a particularconditional expectationand solved the bond PDE. In the case of vanilla options
written on a stockSt, and satisfying all Black-Scholes assumptions, the call priceC(St, t) is
given by a similar conditional expectation,

C(St, t) = EP̃
t

[
e−r(T−t)C(ST , T )

]
(35)

whereT is the expiration date, and̃P is the appropriate probability. If this expectation is
differentiated with respect toSt andt, the resulting partial derivatives will satisfy the Black-
Scholes PDE with the corresponding boundary condition. The main difference is that the Black-
Scholes assumptions take the short ratert to be constant, whereas in the case of bonds, it is a
stochastic process.

These comments reconcile the two views of options that were mentioned in Chapter 8. If
we interpret options as directional instruments, then equation (35) will give the expected gains
of the optional at expiration, under an appropriate probability. The argument above shows that
this expectation solves the associated PDE which was approached as an arbitrage relationship
tying gammagains to other costs incurred during periodic rebalancing. In fact, we see that the
two interpretations of options are equivalent.

3.5. From Black-Scholes to Bond PDE

Comparing the results of trading bond convexity with those obtained in trading vanilla options
provides good insights into the general characteristics of PDE methods that are commonly used
in finance.

In Chapter 8, we derived a PDE for a plain vanilla call,C(t) using the argument of convexity
trading. In this chapter, we discussed a PDE that is satisfied by a default-free pure discount bond
B(t, T ). The results were as follows.

8 The major condition to be satisfied for this is the Markovness ofrt.
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1. The price of a plain vanilla call, written on a nondividend paying stockSt, strike K,
expirationT , was shown to satisfy the following “arbitrage” equality:

1
2
Css(σ(St, t)St)2Δ = (rC − rCsSt)Δ − CtΔ (36)

whereσ(St, t) is the percentage volatility ofSt during one year. The way it is written
here, this percentage volatility could very well depend on timet, andSt.

According to this equation, in order to preclude any arbitrage opportunities, trading
gains obtained from dynamic hedging during a period of lengthΔ should equal the net
funding cost, plus loss of time value. Cancelling common terms and introducing the
boundary condition yielded the Black-Scholes PDE for a vanilla call:

1
2Css(σ(St, t)St)2 + rCsSt − rC + Ct = 0 (37)

C(T ) = max[ST − K, 0] (38)

Under the additional assumption thatσ(St, t)St is proportional toSt with a constant
factor of proportionalityσ,

σ(St, t)St = σSt (39)

this PDE could be solved analytically, and a closed-form formula could be obtained for
theC(t). This formula is the Black-Scholes equation:

C(t) = StN(d1) − Ke−r(T−t)N(d2) (40)

d1,2 =
log St

K + r(T − t) ± 1
2σ2(T − t)

σ
√

T − t
(41)

The partial derivatives of thisC(t) would satisfy the preceding PDE.
2. The procedure for a default-free pure discount bondB(t, T ) followed similar steps,

with some noteworthy differences. Assuming that the continuously compounded spot
interest rate,rt, is the only factor in determining bond prices, the convexity gains due
to oscillations inrt and to dynamic hedging can be isolated, and a similar “arbitrage
relation” can be obtained:

1
2
Brr(σ(rt, t)rt)2Δ = (rtB − μ(rt, t)Br)Δ − BtΔ (42)

Here, theσ(rt, t) is the percentage volatility of the short ratert during one year.
Cancelling common terms, and adding the boundary condition, we obtain the bond

PDE:

1
2Brrσ

2r2
t + μ(rt, t)Br − rtB + Bt = 0 (43)

B(T, T ) = 1 (44)

Under some special assumptions on the dynamic behavior ofrt, this bond PDE can be
solved analytically, and a closed-form formula can be obtained.

We now summarize some important differences between these parallel procedures. First,
note that the PDE for the vanilla option is obtained in an environment where the only risk comes
from theasset priceSt, whereas for bonds the only risk is the interest ratert, which isnot an
asset per se. Second, the previously mentioned difference accounts for the emergence of the term
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μ(rt, t) in the bond PDE, while no such nontransparent term existed in the call option PDE. The
μ(rt, t) represents the expected change in the spot rate duringdt once the effect of interest rate
risk is taken out. Third, theμ(rt, t) may itself depend on other parameters that affect interest
rate dynamics. It is obvious that under these conditions, the closed-form solution forB(t, T )
would depend on the same parameters. Note that in the case of the vanilla option, there was no
such issue and the only relevant parameter wasσ. This point is important since it could make
the bond price formula depend onall the parameters of the underlying random process, whereas
in the case of vanilla options, the Black-Scholes formula depended on the characteristics of the
volatility parameter only.

Before we close this section, a final parallel between the vanilla option and bond prices
should be discussed. The PDE for a call option led to the closed-form Black-Scholes formula
under some assumptions concerning the volatility ofSt. Are there similar closed-form solutions
to the bond PDE? The answer is yes.

3.6. Closed-Form Bond Pricing Formulas

Under different assumptions concerning short rate dynamics, we can indeed solve the bond PDE
and obtain closed-form formulas. We consider three cases of increasing complexity.

The cases are differentiated by the assumed short rate dynamics.

3.6.1. Case 1

The first case is simple. Supposert is constant atr. This gives the trivial dynamics,

drt = 0 (45)

whereσ andμ(rt, t) are both zero. The bond PDE in equation (43) then reduces to

−rB + Bt = 0 (46)

B(T, T ) = 1 (47)

This is a simple, ordinary differential equation. The solutionB(t, T ) is given by

B(t, T ) = e−r(T−t) (48)

3.6.2. Case 2

The second case is known as the Vasicek model.9 Suppose therisk-adjusteddynamics of the
spot rate follows themean-revertingprocess given by10

drt = α (κ − rt) dt + σdWt t ∈ [0, T ] (49)

where theWt is a Wiener process defined for arisk-adjustedprobability.11

Note that the volatility structure is restricted to constantabsolutevolatility denoted byσ.
Suppose, further, that the parametersα, κ, σ, are known exactly. The fundamental PDE for a

9 See Vasicek (1977).

10 The fact that this dynamic isrisk-adjustedis not trivial. Such dynamics are calculated under risk-neutral proba-
bilities and may differ significantly fromreal-worlddynamics. These issues will be discussed in Chapter 11.

11 The adjustments for risk and the associated probabilities will be discussed in Chapter 11.
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typicalB(t, T ) will then reduce to

Brα (κ − rt) + Bt +
1
2
Brrσ

2 − rtB = 0 (50)

Using the boundary conditionB(T, T ) = 1, this PDE can be solved analytically, to provide a
closed-form formula forB(t, T ). The closed-form solution is given by the expression

B(t, T ) = A(t, T )e−C(t,T )rt (51)

where,

C(t, T ) =
(1 − e−α(T−t))

α
(52)

A(t, T ) = e
(C(t,T )−(T −t))(α2κ− 1

2 σ2)

α2 − σ2C(t,T )2

4α (53)

Here, thert is the “current” observation of the spot rate.

3.6.3. Case 3

The third well-known case, where the bond PDE in equation (43) can be solved for a closed
form, is the Cox-Ingersoll-Ross (CIR) model. In the CIR model, the spot ratert is assumed to
obey the slightly different mean-reverting stochastic differential equation

drt = α(κ − rt)dt + σ
√

rtdWt t ∈ [0, T ] (54)

which is known as the square-root specification of interest rate volatility. Here theWt is a Wiener
process under therisk-neutralprobability.

The closed-form bond pricing equation here is somewhat more complex than in the Vasicek
model. It is given by

B(t, T ) = A(t, T )e−C(t,T )rt (55)

where the functionsA(t, T ) andC(t, T ) are given by

A(t, T ) =

(
2

γ e1/2 (α + γ)(T−t)

(α + γ)
(
eγ (T−t) − 1

)
+ 2 γ

)2 α κ
σ2

(56)

C(t, T ) = 2
eγ (T−t) − 1

(α + γ)
(
eγ (T−t) − 1

)
+ 2 γ

(57)

and whereγ is defined as

γ =
√

(α)2 + 2 σ2 (58)

The bond volatilityσ determines therisk premiain expected discount bond returns.

3.7. A Generalization

The previous sections showed that whenever two instruments depending on the same risk fac-
tor display different degrees of convexity, we can, in principle, put together adelta hedging
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strategy similar to thedeltahedging of options discussed in Chapter 8. Whether this is worth-
while depends, of course, on the level of volatility relative to transactions costs and bid-ask
spreads.

When a market practitioner buys a convex instrument and short sells an appropriate number
of a linear (or less convex) instrument, he or she will benefit fromhigher volatility. We then
say that the position islong volatility or long gamma. This trader has purchasedgamma. If, in
contrast, the convex instrument is shorted and the linear instrument is purchased at proper ratios,
the position will benefit when the volatility of the underlying decreases.

As the case of long bonds shows, the idea that volatility can be isolated (to some degree), and
then traded is very general, and can be implemented when instruments of different convexities
are available on thesamerisk. Of course, volatility can be such that transaction costs and bid-ask
spreads make trading it unfeasible, but that is a different point. More important, if the yield curve
slope changes due to the existence of a second factor, the approach presented in the previous
sections will not guarantee convexity gains.

4. Sources of Convexity

There is more than one reason for the convexity of pricing functions. We discuss some simple
cases briefly, using a broad definition of convexity.

4.1. Mark to Market

We start with a minor case due to dailymarking-to-marketrequirements. Letft denote the daily
futuressettlement price written on an underlying assetSt, let Ft be the correspondingforward
price, and letrt be the overnight interest rate.

Marking to market means that the futures position makes or loses money every day depending
on how much the futures settlement price has changed,

Δft = ft − ft−1 (59)

where the time indext is measured in days and hence is discrete.
Suppose the overnight interest ratert is stochastic. Then if the trader receives (pays) mark-

to-market gains daily, these can be deposited or borrowed at higher or lower overnight interest
rates. IfΔft wereuncorrelatedwith interest rate changes,

Δrt = rt − rt−1 (60)

marking to market would not make a difference.
But, whenSt is itself an interest rate product or an asset price related to interest rates,

the random variablesΔft andΔrt will, in general, be correlated. For illustration, suppose the
correlation betweenΔft andΔrt is positive.Then, whenft increases,rt is likely to increase also,
which means that the mark-to-market gains can now be invested at a higher overnight interest
rate. If the correlation betweenΔft andΔrt is negative, the reverse will be true. Forward
contracts do not, normally, require such daily marking-to-market. The contract settles only at
the expiration date. This means that daily paper gains or losses on forward contracts cannot be
reinvested or borrowed at higher or lower rates.

Thus, a futures contract written on an assetSt whose price isnegativelycorrelated withrt

will be cheaper than the corresponding forward contract. If the correlation betweenSt andrt

is positive, then the futures contract will be more expensive. IfSt andrt are uncorrelated, then
futures and forward contracts will have the same price, everything else being the same.
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Example:

Consider any Eurocurrency future. We saw in Chapter 4 that the price of a 1-year
Eurodollar future, settling at timet + 1, is given by the linear function

Vt = 100(1 − ft) (61)

Normally, we expect overnight interest ratert to be positively correlated with the futures
rate ft. Hence, the priceVt, which is not a convex function, would be negatively cor-
related withrt. This means that the Eurodollar futures will be somewhat cheaper than
corresponding forward contracts, which in turn means that futures interest rates are
somewhat higher than the forward rates.

Mark-to-market is one reason why futures and forward rates may be different.

4.2. Convexity by Design

Some products have convexity by design. The contract specifies payoffs and underlying risks,
and this specification may make the contract price a nonlinear function of the underlying risks.
Among the most important classes of instruments that permit such convexity gains are, of course,
options.

We also discussed convexity gains from bonds. Long maturity default-free discount bond
prices, when expressed as a function of yield to maturityyt, are simple nonlinear functions,
such as

B(t, T ) =
100

(1 + yt)T
(62)

Coupon bond prices can be expressed using similar discrete time yield to maturity. The price of
a coupon bond with coupon ratec, and maturityT , can be written as

P (t, T ) =

(
T∑

i=1

100c

(1 + yt)i

)
+

100
(1 + yt)T

(63)

It can be shown that default-free pure discount bonds, or strips, have more convexity than coupon
bonds with the same maturity.

4.2.1. Swaps

Consider a plain vanilla, fixed-payer interest rate swap with immediate start date att = t0 and
end date,tn = T . Following market convention, the floating rate set at timeti is paid at time
ti+1. For simplicity, suppose the floating rate is 12-month USD Libor. This means thatδ = 1.
Let the timet = t0 swap rate be denoted bys and the notional amount,N , be 1.

Then, the time-t0 value of the swap is given by

Vt0 = EP̃
t0

[
Lt0 − s

(1 + Lt0)
+

Lt1 − s

(1 + Lt0)(1 + Lt1)
+ · · · +

Ltn−1 − s∏n−1
i=0 (1 + Lti

)

]
(64)

where{Lt0 , . . . , Ltn−1}are random Libor rates to be observed at timest0, . . . , tn−1, respec-
tively, andP̃ is an appropriate probability measure. With a proper choice of measure, we can
act as if we can substitute aforward Libor rate,F (t0, ti), for the future spot LiborLti for
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all ti.12 If liquid markets exist where such forward Libor rates can be observed, then after this
substitution we can write the previous pricing formula as

Vt0 =
Lt0 − s

(1 + Lt0)
+

F (t0, t1) − s

(1 + Lt0)(1 + F (t0, t1))
(65)

+
F (t0, t2) − s

(1 + Lt0)(1 + F (t0, t1))(1 + F (t0, t2))
+ · · · +

F (t0, tn−1) − s∏n−1
i=0 (1 + F (t0, ti))

whereF (t0, t0) = Lt0 , by definition. Clearly, this formula is nonlinear in eachF (t0, ti). As the
forward rates change, theVt0 changes in a nonlinear way.

This can be seen better if we assume that the yield curve is flat and that all yield curve shifts
are parallel. Under such unrealistic conditions, we have

Lt0 = F (t0, t0) = F (t0, t1) = · · · = F (t0, tn−1) = Ft0 (66)

The swap formula then becomes

Vt0 =
Ft0 − s

(1 + Ft0)
+

Ft0 − s

(1 + Ft0)2
+ · · · +

Ft0 − s

(1 + Ft0)T
(67)

which simplifies to13

Vt0 = (Ft0 − s)
((1 + Ft0)

T − 1)
Ft0(1 + Ft0)T

(68)

The second derivative of this expression with respect toFt0 will be negative, for allFt0 > 0.
As this special case indicates, the fixed-payer swap is a nonlinear instrument in the underlying

forward rates. Its second derivative is negative, and the function isconcavewith respect to a
“typical” forward rate. This is not surprising since a fixed-payer swap has risks similar to the
issuingof a 30-year bond. This means that a fixed-receiverswap will have a convex pricing
formula and will have a similar profile as a long position in a 30-year coupon bond.

Example:

Figure 9-5 plots the value of a fixed-payer swap under the restrictive assumption that the
yield curve is flat and that it shifts only parallel to itself. The parameters are as follows:

t = 0 (69)

s = 7% (70)

T = 30 (71)

Ft0 = .06% (72)

We see that the function is nonlinear and concave.

12 This substitution is delicate and depends on many conditions, among them the fact that the Libor decided at reset
datei is settled at datei + 1.

13 Factor out the numerator and use the geometric series sum:

1 + a + a2 + · · · + aT =
1 − aT+1

1 − a
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In Chapter 15 we will consider a different type of swap, called constant maturity swap. The
convexity of constant maturity swaps is due to their structure. This convexity will, in general,
be more pronounced and at the same time more difficult to correctly account for.

Taking convexity characteristics of financial instruments into account is important. This is
best illustrated by the Chicago Board of Trade’s (CBOT) attempt to launch a new contract with
proper convexity characteristics.

Example:

The Chicago Board of Trade’s board of directors last week approved a plan to launch
5- and 10-year U.S.-dollar denominated interest rate swap futures and options contracts.
Compared with the over-the-counter market, trading of swaps futures will reduce admin-
istrative cost and eliminate counterparty risk, the exchange said.

The CBOT’s move marks the second attempt by the exchange to launch a successful swap
futures contract. Treasuries were the undisputed benchmark a decade ago. They are not
treated as a benchmark for valuation anymore. People price off the swap curve instead,
said a senior economist at the CBOT.

The main difference between the new contract and the contract that the CBOT de-listed
in the mid-1990s is that the new one is convex in form rather than linear. It’s one less
thing for end users to worry about, the economist said, noting that swap positions are
marked to market on a convex basis. Another critical flaw in the old contract was that it
launched in the three and five-year, rather than the five and ten-year maturities, which
is where most business takes place.

The new swaps contracts will offer institutional investors such as bank treasurers, mort-
gage passthrough traders, originators, service managers, portfolio managers, and other
OTC market participants a vehicle for hedging credit and interest rate exposure, the
exchange said. (IFR, Issue 1393, July 21, 2001)

This is an excellent example that shows the importance of convexity in contract design.
Futures contracts are used for hedging by traders. If the convexity of the hedging instrument is
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different than the convexity of the risks to be hedged, then the hedge may deteriorate as volatility
changes. In fact, as volatility increases, the more convex instrument may yield highergamma
gains and this will influence its price.

4.2.2. Convexity of FRAs

Now consider the case of forward rate agreements (FRAs). As discussed in Chapter 4, FRAs are
instruments that can be used to fix, at timet0, the risk associated with a Libor rateLti

, that will
be observed at timeti, and that has a tenor ofδ expressed indays per year.14 The question is
whenwould this FRA be settled. This can be done in different ways, leading to slightly different
instruments. We can envisage three types of FRAs.

One way is to setLti at timeti, but then, settle at timeti + δ. This would correspond to the
“natural” way interest is paid in financial markets. Hence, at timet = t0, the value of the FRA
will be zero and at timeti + δ the FRA buyer will receive or pay

[Lti
− Ft0 ]Nδ (73)

depending on the sign of the difference. The FRA seller will have the opposite cash flow.
The second type of FRA trades much more frequently in financial markets. The description

of these is the same, except that the FRA is settled at timeti, instead of atti + δ. At time ti,
when the Libor rateLti

is observed, the buyer of the FRA will make (receive) the payment

[Lti
− Ft0 ]δ

1 + Lti
δ

N (74)

This is the previous settlement amountdiscountedfrom timeti + δ to timeti, using the timeti
Libor rate. Figure 9-6 shows an example to the payoff of a 12 month FRA.

0.1750.150.1250.10.750.050.025

0.025

−0.025

−0.05

−0.075

−0.1

0.0

Gain/Loss

Libor

FIGURE 9-6

14 The year is assumed to be 360 days.
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Of even more interest for our purpose is a third type of FRA contract, a Libor-in-arrears
FRA, where the Libor observed at timeti is used to settle the contract at timeti, according to

[Lti − ft0 ]δN (75)

Here,ft0 is the FRA rate that applies to this particular type of FRA.15 Note that we are using
a symbol different than theFt0 , because the two FRA rates are, in general, different from each
other due to convexity differences in the two contracts.

The question to ask here is under what conditions would the ratesFt0 andft0 differ from
each other? The answer depends indeed on the convexity characteristics of the underlying
contracts. In fact, market practitioners approximate these differences usingconvexity adjust-
mentfactors.

4.3. Prepayment Options

A major class of instruments that have convexity by design is the broad array of securities
associated withmortgages. A mortgage is a loan secured by the purchaser of a residential or
commercial property. Most fixed-rate mortgages have a critical property. They contain the right
to prepay the loan. The mortgage receiver has the right to pay the remaining balance of the loan
at any time, and incur only a small transaction cost. This is called a prepayment option and
introduces negative convexity in mortgage-related securities. In fact, the prepayment option is
equivalent to an American style put option written on the mortgage rateRt. If the mortgage rate
Rt falls below a limitRK , the mortgage receiver will pay back the original amount denoted
by N , by refinancing at the new rateRt. Instead of making a stream of fixed annual interest
paymentsRt0N , the mortgage receiver has the option (but not the obligation) to pay the annual
interestRti

N at some timeti. The mortgage receiver may exercise this option ifRti
< Rt0 .

The situation is reversed for the mortgage issuer.
The existence of such prepayment options creates negative convexity for mortgage-backed

securities (MBS) and other related asset classes. Since the prepayment option involves an
exchange of one fixed stream of payments against another fixed stream, it is clear that interest
rate swaps play a critical role in hedging and risk-managing these options dynamically. We will
deal with this important topic in Chapter 21.

5. A Special Instrument: Quantos

Quanto type financial products form a major class of instruments where price depends on
correlations. At the end of this chapter, we will look at these in detail and study the finan-
cial engineering of quantos by discussing their characteristics and other issues. This can be
regarded as another example to the methods introduced in Chapters 8 and 9. We will consider
pricing of quantos in Chapter 12.

5.1. A Simple Example

Consider the standard currency swap in Figure 9-7. There are two cash flows, in two currencies,
USD and EUR. The principal amounts are exchanged at the start date and reexchanged at the
end date. During the life of the swap, floating payments based on USD Libor are exchanged for

15 Similarly, we can have Libor-in-arrear swaps on the generalization of this type of FRA contract.
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floating payments based on EUR Libor. There will be a small known spread involved in these
exchanges as well.

The standard currency swap of Figure 9-7 will now be modified in an interesting way. We
keep the two floating Libor rates the same, butforceall payments to be made in one currency
only, say USD. In other words, the calculated EUR Libor indexed cash flows will be paid
(received) in USD. This instrument is called aquanto swap, ordifferential swap. In such a swap,
the principal amounts would be in the same currency, and there would be no need to exchange
them. Only net interest rate cash flows will be exchanged.

Example:

Suppose the notional principal is USD30 million. Quotes on Libor are as follows:

TENOR YEN Libor DOLLAR Libor

3-month 0.055 1.71
6-month 0.185 1.64
12-month 0.065 1.73

In a quanto swap, one party would like to receive 6-month USD Libor and pay 6-month
JPY Libor for 1 year. However, all payments are made in USD. For example, if the first
settlement is according to the quotes given in the table, in 6 months this party will receive:

30,000,000(.0164)(
1
2
) − 30,000,000(0.00185)(

1
2
) − 30,000,000(

1
2
)c (76)

where thec is a constant spread that needs to be determined in the pricing of this quanto
swap. Note that the JPY interest rate is applied to a USD denominated principal.

In this type of swap, the two parties are exposed to the risk of interest rate differentials.
However, at least one of them is not exposed to currency risk.

Why would anyone be interested in quanto swaps? Note that even after the spreadc is
included, the interest cost paid indollars,

JPY Libor+ c (77)

may be significantly less than USD Libor rates. This way, the party that receives USD Libor
and pays JPY Libor (in USD) may be lowering funding costs substantially. Accordingly, the
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market would see interest in such quanto swaps when the short ends of the yield curves in two
major currencies are significantly different. Banks could then propose these instruments to their
clients as a way of “reducing” funding costs. Of course, from the clients’ point of view, quanto
swaps still involve an interest rate risk and, possibly, an exchange rate risk. If the underlying
yield curves shift in unexpected ways, losses may be incurred.

The following example illustrates these from the point of view of British pound and Swiss
franc interest rates.

Example:

With European economies at a very different point in the trade cycle, corporates are
looking to switch their debts into markets offering the cheapest funding. But whereas
most would previously have been dissuaded by foreign exchange risk, the emergence of
quanto products has allowed them to get the best of both worlds.

With quanto swaps, interest is paid in a different currency to that of the reference index,
the exchange rate being fixed at the outset of the swap. As a result, the product can
provide exposure to a non-domestic yield curve without the accompanying exchange
rate risks.

In recent weeks this type of product has proved increasingly appealing to UK corporates
that have entered into a swap in which the paying side is referenced to Swiss Libor but
the returns are paid in sterling. Swiss franc Libor is still low relative to sterling Libor
and although the corporate ends up paying Swiss Libor plus a spread, funding costs
are often still considerably cheaper than normal sterling funding. Deals have also been
referenced to German or Japanese Libor.

However, derivatives officials were also keen to point out that quanto products are far
from being risk-free. “Given that the holder of the swap ends up paying Swiss Libor plus
a spread, the curves do not have to converge much to render the trade uneconomic,”
said one. (IFR, Issue 1190, July 5 1997.)

5.1.1. Quantos in Equity

The notion of a quanto instrument can be applied in other financial markets. For example, a
foreign investor may want to have exposure to Japanese equity markets without having to incur
currency risk.Then, a quanto contract can be designed such that the gains and losses of an index in
Japanese equities are paid annually in the foreign investors’domestic currency instead of in yen.

5.2. Pricing

The pricing of quanto contracts raises interesting financial engineering issues.16 We discuss a
simple case to illustrate quantos. First, fix the underlying. Assume that we are dealing with
a particularforeign currencydenominated stockS∗

t . Without loss of generality, suppose the
domesticcurrency is USD, the foreign currency is euro, and the stock is European.

A dollar-based investor would like to buy the stock, and benefit from potential upside in
European markets, but dislikes currency exposure to euro. The investor desires exposure to
underlying equity risk only. To accommodate his wish, the bank proposes purchasing the stock
via aquanto forward. An expiration dateT is chosen, and the current exchange rate EUR/USD,

16 This is an example of the measure switching techniques to be discussed in Chapter 13.
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et is used to calculate the time-T settlement. The forward contract has USD priceFt, and settles
according to

VT = (etS
∗
T − Ft) (78)

Here, theVT is the time-T value of the contract. It is measured in the domestic currency, and
will be positive if the stock appreciates sufficiently; otherwise, it will be negative. TheFt is
the forward price of the quanto contract onS∗

T and has to be determined by a proper pricing
strategy.

5.3. The Mechanics of Pricing

Suppose the current time ist and a forward quanto contract onS∗
T is written with settlement

dateT = t + Δ. Suppose also that at timeT there are only three possible states of the world,
{ω1, ω2, ω3}. The following table gives the possible values of four instruments, the foreign
stock, a foreign deposit, a domestic deposit, and a forward FX contract on the exchange rateet.

Time t price value in ω1 value in ω2 value in ω3

S∗
t S∗1

t+Δ S∗2
t+Δ S∗3

t+Δ

1 USD (1 + rΔ) (1 + rΔ) (1 + rΔ)
1 et e1

t+Δ(1 + r∗Δ) e2
t+Δ(1 + r∗Δ) e3

t+Δ(1 + r∗Δ)
0 ft − e1

t+Δ ft − e2
t+Δ ft − e3

t+Δ

In this table, the first row gives the value of the foreign stock in the three future states of the
world. These are measured in the foreign currency. The second row represents what happens to
1 dollar invested in a domestic savings account. The third row shows what happens when 1 unit
of foreign currency is purchased atet dollars and invested at the foreign rater∗.

The forward exchange rateft is priced as

ft = et
1 + rΔ
1 + r∗Δ

, (79)

whereet is the current exchange rate. In this example, we are assuming that the domestic and
foreign interest rates are constant atr andr∗ respectively. Now consider the quanto forward
contract with current priceFt mentioned earlier. TheFt will be determined at timet, and the
contract will settle at timeT = t + Δ. Depending on which state occurs, the settlement amount
will be one of the following:

{(S∗1
t+Δet − Ft), (S∗2

t+Δet − Ft), (S∗3
t+Δet − Ft)} (80)

These amounts are all in USD. What is the arbitrage-free value ofFt?
We can use three of the four instruments listed to form a portfolio with weightsλi, i = 1, 2, 3

that replicate the possible values ofetS
∗
t+Δ at each state exactly. This will be similar to the cases

discussed in Chapter 7. For example, using the first three instruments, for each state we can write

Stateω1 λ1S
∗1
t+Δe1

t+Δ + λ2(1 + rΔ) + λ3e
1
t+Δ(1 + r∗Δ) = S∗1

t+Δet (81)

Stateω2 λ1S
∗2
t+Δe2

t+Δ + λ2(1 + rΔ) + λ3e
2
t+Δ(1 + r∗Δ) = S∗2

t+Δet (82)

Stateω3 λ1S
∗3
t+Δe3

t+Δ + λ2(1 + rΔ) + λ3e
3
t+Δ(1 + r∗Δ) = S∗3

t+Δet (83)

In these equations the right-hand side is the future value of the foreign stock measured at the
current exchange rate. The left-hand side is the value of the replicating portfolio in that state.
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These form three equations in three unknowns, and, in general, can be solved for the unknown
λi. Once these portfolio weights are known, the current cost of putting the portfolio together
leads to the price of the quanto:

λ1S
∗
t et + λ2 + λ3et (84)

This USD amount needs to be carried to timeT , since the contract settles atT . This gives

Ft = [λ1S
∗
t et + λ2 + λ3et](1 + rΔ) (85)

Example:

Suppose we have the following data on the first three rows of the previous table:

Time t price value in ω1 value in ω2 value in ω3

100 115 100 90
1 USD (1 + .05 Δ) (1 + .05 Δ) (1 + .05 Δ)
1 EUR× 0.98 (1 + .03 Δ) 1.05 (1 + .03 Δ) 0.98 (1 + .03 Δ).90

What is the price of the quanto forward?

We set up the three equations

λ1(1.05)115 + λ2(1 + .05Δ) + λ31.05(1 + .03Δ) = 0.98(115) (86)

λ1(0.98)100 + λ2(1 + .05Δ) + λ30.98(1 + .03Δ) = 0.98(100) (87)

λ1(0.90)90 + λ2(1 + .05Δ) + λ30.90(1 + .03Δ) = 0.98(90) (88)

We select the expirationΔ = 1 , for simplicity, and obtain

λ1 = 0.78 (89)

λ2 = 60.67 (90)

λ3 = −41.53 (91)

Borrowing 42 units of foreign currency, lending 61 units of domestic currency, and
buying 0.78 units of the foreign stock would replicate the value of the quanto contract
at timet + 1. The price of this portfolio att will be

100λ10.98 + λ2 + 0.98λ3 = 96.41 (92)

If this is to be paid at timet + Δ, then it will be equal to the arbitrage-free value ofFt:

Ft = (1.05)96.41 = 101.23 (93)

This example shows that the value of the quanto feature is related to the correlation between the
movements of the exchange rate and the foreign stock. If this correlation is zero, then the quanto
will have the same value as a standard forward. If the correlation is positive (negative), then the
quanto forward will be less (more) valuable than the standard forward. In the example above,
the exchange rates and foreign stock were positively correlated and the quantoed instrument
cost less than the original value of the foreign stock.

5.4. Where Does Convexity Come In ?

The discussion of the previous section has shown that, in a simpleone periodsetting with three
possible states of the world, we can form a replicating portfolio for the quantoed asset payoffs
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at a future date. As the number of states increases and time becomes continuous, this type
of replicating portfolio needs readjustment. The portfolio adjustments would, in turn, lead to
negative or positive trading gains depending on the sign of the correlation, similar to the case of
options. This is where volatilities become relevant. In the case of quanto assets there are, at least,
two risks involved, namely, exchange rate and foreign equity or interest rates. The covariance
between these affects pricing as well.

The quanto feature will have a positive or negative value at timet0 due to the trading gains
realized during rebalancing. Thus, quantos form another class of assets where the nonnegli-
gibility of second order sensitivities leads to dependence of the asset price on variances and
covariances.

5.5. Practical Considerations

At first glance, quanto assets may appear very attractive to investors and portfolio managers.
After all, a contract on foreign assets is purchased and all currency risk is eliminated. Does this
mean we should alwaysquanto?

Here again, some real-life complications are associated with the instrument. First of all, the
purchase of a quanto may involve an upfront payment and the quanto characteristics depend on
risk premia, bid-ask spreads, and on transaction costs associated with the underlying asset and
the underlying foreign currency. These may be high and an approximate hedge using foreign
currency forwards may be cheaper in the end.

Second, quanto assets have expiration dates. If, for some unforeseen reason, the contract is
unwound before expiration, further costs may be involved. More important, if the foreign asset
is held beyond the expiration date, the quanto feature would no longer be in effect.

Finally, the quanto contract depends on thecorrelationbetween two risk factors, and this
correlation may beunstable. Under these conditions, the parties that are long or short the quanto
have exposure to changes in this correlation parameter. This may significantly affect the mark-
to-market value of the quanto contracts.

6. Conclusions

Pricing equations depends on one or more risk factors. When the pricing functions are nonlinear,
replicating portfolios that use linear assets with periodically adjusted weights will lead to positive
or negative cash flows during the hedging process. If the underlying volatilities and correlations
are significant, trading gains from these may exceed the transaction costs implied by periodic
rebalancing, and the underlying nonlinearity can be traded.

In this chapter we saw two basic examples of this: one from the fixed income sector which
made convexity of bonds valuable, and the second from quanto instruments, which also brought
in the covariance between risks. The example on quantos is a good illustration of what happens
when term structure models depend on more than one factor. In such an environment, the
covariances as well as the volatilities between the underlying risks may become important.

Suggested Reading

Two introductory sources discuss the convexity gains one can extract from fixed-income instru-
ments.They areTuckman (2002) andJegadeesh and Tuckman (1999).The convexity differences
between futures and forwards are clearly handled inHull (2002). The discussion of the quanto
feature used here is fromPiros (1998), which is inDeRosa (1998).Wilmott (2000) has a nice
discussion of quantoed assets as well.Hart (1977) is a very good source on this chapter.
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Exercises

1. You are given the following default-free long bond:
Face value: 100
Issuing price: 100
Currency: USD
Maturity: 30 years
Coupon: 6%
No implicit calls or puts.

Further, in this market there are no bid-ask spreads and no trading commissions. Finally,
the yield curve is flat and moves only parallel to itself.

There is, however, a futures contract on the 1-year Libor rate. The price of the contract
is determined as

Vt = 100(1 − ft) (94)

whereft is the “forward rate” on 1-year Libor.

(a) Show that if the yield of the 30-year bond isyt, then at all times we have

yt = ft (95)

(b) Plot the pricing functions forVt and the bond.
(c) Suppose the current yieldy0 is at 7%. Put together a zero-cost portfolio that is

delta-neutral toward movements of the yield curve.
(d) Consider the following yield movements over 1-year periods:

9%, 7%, 9%, 7%, 9%, 7% (96)

What are the convexity gains during this period?
(e) What other costs are there?

2. You are given a 30-year bond with yieldy. The yield curve is flat and will have only
parallel shifts. You have a liquid 3-month Eurodollar contract at your disposition. You
can also borrow and lend at a rate of 5% initially.

(a) Using the long bond and the Eurodollar contract, constructa delta-hedged
portfolio that is immune to interest rate changes.

(b) Now suppose you observe the following interest rate movements over a period
of 1 year:

{.06, .04, .06, .04, .06, .04} (97)

These observations are each two months apart. What are your convexity gains
from a long volatility position?

3. Consider the data given in the previous question.

(a) Suppose an anticipated movement as in the previous question. Market
participants suddenly move to an anticipated trajectory such as

{.08, .02, .08, .02, .08, .02} (98)

Assuming that this was the only exogenous change in the market, what do
you think will happen to the yield on the 30-year bond?
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4. Assuming that the yield curve is flat and has only parallel shifts, determine the spread
between the paid-in-arrear FRAs and market-traded linear FRAs if the FRA rates are
expected to oscillate as follows around an initial rate:

{+.02, −.02, +.02, −.02, +.02, −.02, } (99)
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CASE STUDY: Convexity of Long Bonds, Swaps, and Arbitrage

The yield of a long bond tells you how much you can earn from this bond. Correct? Wrong. You
can earn more.

The reason is that long bonds and swaps have convexity. If there are two instruments, one
linear and the other nonlinear, and if these are a function of the same risk factors, we can form
a portfolio that isdelta-neutral and that guarantees some positive return.

This is a complex and confusing notion and the purpose of this case study is to clarify this
notion a bit.

At first, the case seems simple. Take a look at the following single reading provided on an
arbitrage position taken by market professionals and answer the questions that follow.

The more sophisticated traders in the swaps market—or at least those who have been willing
to work alongside their in-house quants—have until recently been playing a game of one-
upmanship to the detriment of their more naive interbank counterparties. By taking into account
the convexity effect on long-dated swaps, they have been able to profit from the ignorance of
their counterparties who saw no reason to change their own valuation methods.

More specifically, several months ago several leading Wall Street US dollar swaps houses—
reportedly JP Morgan and Goldman Sachs among them—realized that there was more value
than met the eye when pricing Libor-in-arrears swaps. According to London traders, they began
to arbitrage the difference between their own valuation models and those of “swap traders who
still relied on naive, traditional methods” and transacting deals where they would receive Libor
in arrears and pay Libor at the start of the period, typically for notional amounts of US$100m
and over.

Depending on the length of the swap and the Libor reset intervals, they realized that they
could extract up to an additional 8bp–10bp from the transaction, irrespective of the shape of
the yield curve. The counterparty, on the other hand, would see money “seep away over the life
of the swap, even if it thought it was fully hedged,” said a trader.

The added value is only significant on long-dated swaps—typically between five and 10
years—and in particular those based on 12-month Libor rather than the more traditional
six-month Libor basis. This value is due to the convexity effect more commonly associated
with the relationship between yields and the price of fixed income instruments.

It therefore pays to be long convexity, and when applied to Libor-in-arrears structures proved
to be profitable earlier this year. The first deals were transacted in New York and were restricted
to the US dollar market, but in early May several other players were alerted to what was going on
in the market and decided to apply the same concept in London. One trader expressed surprise at
the lack of communication between dealers at different banks, a fact which allowed the arbitrage
to continue both between banks directly and through swaps brokers.

Also, “none of the US banks active in the market was involved in trying to exploit the same
opportunities in other currencies,” he said, adding “you could play the same game in sterling—
convexity applies to all currencies.”

In fact, there was one day in May when the sterling market was flooded with these trans-
actions, and it “lasted for several days” according to a sterling swaps dealer, “until everyone
moved their prices out,” effectively putting a damper on further opportunities as well as making
it difficult to unwind positions.

Further, successful structures depend on cap volatility as the extra value is captured by
selling caps against the Libor-in-arrears being received, in addition to delta hedging the swap.
In this way value can be extracted from yield curves irrespective of the slope.

“In some cap markets such as the yen, volatility isn’t high enough to make the deal work,”
said one dealer. Most of the recent interbank activity has taken place in US dollars, sterling,
and Australian dollars.
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As banks have become aware ofthe arbitrage,opportunities have become rarer, at least in
the interbank market. But as one dealer remarked, “the reason this [structure] works is because
swap traders think they know how to value Libor-in-arrears swaps in the old way, and they stick
to those methods.”

“Paying Libor in arrears without taking the convexity effect into account,” he added, “is like
selling an option for free, but opportunities will still exist where traders stick to the old pricing
method.”

Many large swap players last week declined to comment, suggesting that the market is still
alive, although BZW in London, which has been active in the market, did say that it saw such
opportunities as a chance to pass on added value to its own customers. (IFR, issue 1092 July
29, 1995.)

Questions

1. First the preliminaries. Explain what is meant by convexity of long-dated bonds.
2. What is meant by the convexity of long-dated interest rate swaps?
3. Explain the notion of convexity using a graph.
4. If bonds are convex, which fixed income instrument is not convex?
5. Describe the cash flows of FRAs. When are FRAs settled in the market?
6. What is the convexity adjustment for FRAs?
7. What is a cap? What volatility do you buy or sell using caps?
8. Now the real issue. Explain the position taken by “knowledgeable” professionals.
9. In particular, is this a position on the direction of rates or something else? In fact, can you

explain why the professionals had to hedge their position using caps or floors?
10. Do they have to hedge using caps only? Can floors do as well? Explain your answer

graphically.
11. Is this a true arbitrage? Are there any risks?


